跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 19:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:瑟琳娜
研究生(外文):Rina Se. Sitindaon
論文名稱:鋅電池正極材料的開發:鋅錳氧化物在鎳極的沉積製備方法
論文名稱(外文):Zn-MnO2 Nanomaterials on Nickel Foam as Cathode Electrode in Zinc Ion Batteries (ZIBs)
指導教授:林寬鋸
口試委員:果尚志黃景帆
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:38
中文關鍵詞:二氧化錳鋅離子電池
外文關鍵詞:manganese dioxidecathodeZinc Ion Batteris
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis discuss the MnO2 nanomaterials composited zinc ion on nickel foam as cathode electrode in Zinc Ion Battery. The materials fabricated by electrodechemical deposition from aqueouse 1 M Na2SO4 solution and 0.01 M MnSO4 solution as soure of MnO2 and ZnSO4 solution as source of zinc ion on nickel foam substrate. The electrodeposited MnO2 composite zinc (Zn-MnO2) result MnO2 gamma plane. The Zn-MnO2 electrochemical properties has been characterize by using cyclic votammetry and galvanostic charge/discharge analysis on coin cell 2032 type with potential range 1.0-1.8 V. The cyclic voltammograms shows of Zn-MnO2 is higher than pristine MnO2 as cathode on Zinc ion battery. Galvanostatic charge shows specific capacity of Zn-MnO2 ( 77.59 mAh/g) almost three times higher than pristine MnO2 (28.34 mAh/g) at current density 0.05 mA/cm2. The zinc composite improving the electrochemical activity of MnO2 conduce the specific capacity in Zinc Ion Battery. The Zn-MnO2 is a promissing cathode material for used in Zinc ion batteries.
ABSTRACT i
TABLE OF CONTENTS ii
LIST OF FIGURES iv
LIST OF TABLES vi
CHAPTER I INTRODUCTION 1
1.1 Background. 1
CHAPTER II LITERATURE STUDY 3
2.1 Manganesse dioxide 3
2.2 Zinc Ion Batteries 4
2.2.1 Cathode for ZIBs 5
2.2.2 Electrolyte for ZIBs 6
2.2.3 Anode for ZIBs 7
2.3 Nickel Foam 8
2.4 Electrochemical Deposition Method 8
2.5 Zinc Composite 9
CHAPTER III RESEARCH MOTIVATION 11
3.1 Research Motivation 11
CHAPTER IV METHOD AND EXPERIMENTAL SECTION 12
4.1 Method 12
4.2 Materials and Instrument 13
4.2.1 Materials 13
4.2.2 Instruments 13
4.3 Experimental Section 14
4.3.1 Synthesis of MnO2/ Nickel foam 14
4.3.2 Synthesis of Zn-MnO2/ Nickel foam 14
4.3.3 Characterization of Zn-MnO2/ Nickel foam 14
CHAPTER V RESULT AND DISCUSSION 16
5.1 Scaning Electron Microscope (SEM) 16
5.2 X-Ray Diffaction (XRD) 19
5.3 X-Ray Photoelectron Spectroscopy (XPS) 20
5.5 Raman Spectra 23
5.6 Electrochemical properties by Supercapacitor 24
5.7 Electrochemical Properties on Coin Cell 29
CHAPTER VI CONCLUSION 33
CHAPTER VII FUTURE WORK APPLICATION 34
REFERENCES 35
1.Ke, Q. and J. Wang, Graphene-based materials for supercapacitor electrodes–A review. Journal of Materiomics, 2016. 2(1): p. 37-54.
2.Tang, Y., et al., Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 2018. 12: p. 284-309.
3.Blomgren, G.E., The development and future of lithium ion batteries. Journal of The Electrochemical Society, 2017. 164(1): p. A5019-A5025.
4.Alfaruqi, M.H., et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2018. 276: p. 1-11.
5.Jiang, B., et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochimica Acta, 2017. 229: p. 422-428.
6.Xia, C., et al., Rechargeable Aqueous Zinc‐Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced Materials, 2018. 30(5): p. 1705580.
7.Yan, D., et al., A novel pineapple-structured Si/TiO2 composite as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2014. 609: p. 86-92.
8.Zhu, C., et al., Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: An overview. Electrochimica Acta, 2017. 251: p. 710-728.
9.Zubi, G., et al., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
10.Kundu, M. and L. Liu, Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. Journal of Power Sources, 2013. 243: p. 676-681.
11.Alias, N. and A.A. Mohamad, Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries. Journal of King Saud University-Engineering Sciences, 2015. 27(1): p. 43-48.
12.Chao, D., et al., A High‐Rate and Stable Quasi‐Solid‐State Zinc‐Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018. 30(32): p. 1803181.
13.Wei, T., et al., High-rate and durable aqueous zinc ion battery using dendritic V10O24· 12H2O cathode material with large interlamellar spacing. Electrochimica Acta, 2018. 287: p. 60-67.
14.Parker, J.F., et al., Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science, 2017. 356(6336): p. 415-418.
15.Hao, J., et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 2018. 259: p. 170-178.
16.Mo, F., et al., A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Science Bulletin, 2018. 63(16): p. 1077-1086.
17.Ming, J., et al., Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering: R: Reports, 2019. 135: p. 58-84.
18.Ashassi-Sorkhabi, H., P. La’le Badakhshan, and E. Asghari, Electrodeposition of three dimensional-porous Ni/Ni (OH) 2 hierarchical nano composite via etching the Ni/Zn/Ni (OH) 2 precursor as a high performance pseudocapacitor. Chemical Engineering Journal, 2016. 299: p. 282-291.
19.Yang, G.-W., C.-L. Xu, and H.-L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications, 2008(48): p. 6537-6539.
20.Bresser, D., et al., Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material. Chemistry of Materials, 2013. 25(24): p. 4977-4985.
21.Torabi, M. and S. Sadrnezhaad, Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. Journal of Power Sources, 2011. 196(1): p. 399-404.
22.Yu, Y., et al., Doping mechanism of Zn 2+ ions in Zn-doped TiO 2 prepared by a sol–gel method. CrystEngComm, 2015. 17(27): p. 5074-5080.
23.Feng, L.L., et al., MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Research Letters, 2014. 9.
24.Qin, Y., et al., In situ fabrication of porous-carbon-supported α-MnO 2 nanorods at room temperature: application for rechargeable Li–O 2 batteries. Energy & Environmental Science, 2013. 6(2): p. 519-531.
25.Fei, J., et al., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials, 2008. 20(3): p. 452-456.
26.Feng, L., et al., MnO 2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale research letters, 2014. 9(1): p. 290.
27.Li, Z., et al., Rational growth of various α-MnO2 hierarchical structures and β-MnO2 nanorods via a homogeneous catalytic route. Crystal growth & design, 2005. 5(5): p. 1953-1958.
28.Cao, J., et al., Fabrication of γ-MnO 2/α-MnO 2 hollow core/shell structures and their application to water treatment. Journal of materials chemistry, 2011. 21(40): p. 16210-16215.
29.Xu, M., et al., Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. The Journal of Physical Chemistry C, 2007. 111(51): p. 19141-19147.
30.Li, W.N., et al., Hydrothermal synthesis of structure‐and shape‐controlled manganese oxide octahedral molecular sieve nanomaterials. Advanced Functional Materials, 2006. 16(9): p. 1247-1253.
31.Hashem, A., et al., Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel. Electrochimica Acta, 2018. 262: p. 74-81.
32.Duan, X., et al., Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties. CrystEngComm, 2012. 14(12): p. 4196-4204.
33.Alfaruqi, M.H., et al., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chemistry of Materials, 2015. 27(10): p. 3609-3620.
34.Hu, P., et al., Highly Durable Na2V6O16· 1.63 H2O Nanowire Cathode for Aqueous Zinc-Ion.
35.Jia, Z., B. Wang, and Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Materials Chemistry and Physics, 2015. 149: p. 601-606.
36.Xu, C., et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angewandte Chemie International Edition, 2012. 51(4): p. 933-935.
37.Sun, W., et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. Journal of the American Chemical Society, 2017. 139(29): p. 9775-9778.
38.Zhang, N., et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature communications, 2017. 8(1): p. 405.
39.Alfaruqi, M.H., et al., A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochemistry Communications, 2015. 60: p. 121-125.
40.Yuan, C., et al., Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochimica Acta, 2014. 116: p. 404-412.
41.He, P., et al., High‐Performance Aqueous Zinc–Ion Battery Based on Layered H2V3O8 Nanowire Cathode. Small, 2017. 13(47): p. 1702551.
42.Kasiri, G., et al., An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochimica Acta, 2016. 222: p. 74-83.
43.Li, G., et al., Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2 (PO4) 3. Nano Energy, 2016. 25: p. 211-217.
44.Kundu, D., et al., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 2016. 1(10): p. 16119.
45.Wang, F., et al., Highly reversible zinc metal anode for aqueous batteries. Nature materials, 2018. 17(6): p. 543.
46.Zhang, N., et al., Cation-deficient spinel ZnMn2O4 cathode in Zn (CF3SO3) 2 electrolyte for rechargeable aqueous Zn-ion battery. Journal of the American Chemical Society, 2016. 138(39): p. 12894-12901.
47.Liu, Z., P. Bertram, and F. Endres, Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. Journal of Solid State Electrochemistry, 2017. 21(7): p. 2021-2027.
48.Wang, L.-P., et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochimica Acta, 2017. 244: p. 172-177.
49.Xu, D., et al., Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochimica Acta, 2014. 133: p. 254-261.
50.Zhang, L., et al., Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Scientific reports, 2015. 5: p. 18263.
51.Dawut, G., et al., High-performance rechargeable aqueous Zn-ion batteries with a poly (benzoquinonyl sulfide) cathode. Inorganic Chemistry Frontiers, 2018. 5(6): p. 1391-1396.
52.Pan, C., R.G. Nuzzo, and A.A. Gewirth, ZnAl x Co2–x O4 Spinels as Cathode Materials for Non-Aqueous Zn Batteries with an Open Circuit Voltage of≤ 2 V. Chemistry of Materials, 2017. 29(21): p. 9351-9359.
53.Vu, T.D., P.K. Duy, and H. Chung, Nickel foam–caged Ag-Au bimetallic nanostructure as a highly rugged and durable SERS substrate. Sensors and Actuators B: Chemical, 2019. 282: p. 535-540.
54.Fan, S.-f., et al., Compressive properties and energy absorption characteristics of open-cell nickel foams. Transactions of Nonferrous Metals Society of China, 2017. 27(1): p. 117-124.
55.Zhang, J., et al., Construction of ZnO@ Co3O4-loaded nickel foam with abrasion resistance and chemical stability for oil/water separation. Surface and Coatings Technology, 2019. 357: p. 244-251.
56.Xia, Y., et al., Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance. Journal of Power Sources, 2015. 283: p. 125-131.
57.Zangari, G., Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings, 2015. 5(2): p. 195-218.
58.Behboudi-Khiavi, S., et al., Facile pulse elecrodeposition of LixMnO2 nano-structures as high performance cathode materials for lithium ion battery. Electrochimica Acta, 2018. 261: p. 491-502.
59.Edison, T.N.J.I., et al., Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance. Journal of the Taiwan Institute of Chemical Engineers, 2019.
60.Wang, N., et al., High-performance asymmetric micro-supercapacitors based on electrodeposited MnO 2 and N-doped graphene. Nanotechnology, 2019.
61.Zhou, T., et al., Zinc ions doped poly (aniline-co-m-aminophenol) for high-performance supercapacitor. Synthetic Metals, 2015. 199: p. 169-173.
62.Cheng, J., et al., Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Advances, 2016. 6(43): p. 37189-37194.
63.Poonguzhali, R., et al., Influence of Zn doping on the electrochemical capacitor behavior of MnO 2 nanocrystals. RSC Advances, 2015. 5(56): p. 45407-45415.
64.Radhamani, A., M.K. Surendra, and M.R. Rao, Zn doped δ-MnO2 nano flakes: An efficient electrode material for aqueous and solid state asymmetric supercapacitors. Applied Surface Science, 2018. 450: p. 209-218.
65.You, Z., et al., Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors. Applied Surface Science, 2012. 258(20): p. 8117-8123.
66.Devaraj, S. and N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. The Journal of Physical Chemistry C, 2008. 112(11): p. 4406-4417.
67.Naduvath, J., et al., Electrochemical synthesis of novel Zn-doped TiO 2 nanotube/ZnO nanoflake heterostructure with enhanced DSSC efficiency. Nano-micro letters, 2016. 8(4): p. 381-387.
68.Hong, Y.J., et al., Multifunctional Wearable System that Integrates Sweat‐Based Sensing and Vital‐Sign Monitoring to Estimate Pre‐/Post‐Exercise Glucose Levels. Advanced Functional Materials, 2018. 28(47): p. 1805754.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top