|
1.Ke, Q. and J. Wang, Graphene-based materials for supercapacitor electrodes–A review. Journal of Materiomics, 2016. 2(1): p. 37-54. 2.Tang, Y., et al., Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials, 2018. 12: p. 284-309. 3.Blomgren, G.E., The development and future of lithium ion batteries. Journal of The Electrochemical Society, 2017. 164(1): p. A5019-A5025. 4.Alfaruqi, M.H., et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2018. 276: p. 1-11. 5.Jiang, B., et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochimica Acta, 2017. 229: p. 422-428. 6.Xia, C., et al., Rechargeable Aqueous Zinc‐Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced Materials, 2018. 30(5): p. 1705580. 7.Yan, D., et al., A novel pineapple-structured Si/TiO2 composite as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2014. 609: p. 86-92. 8.Zhu, C., et al., Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: An overview. Electrochimica Acta, 2017. 251: p. 710-728. 9.Zubi, G., et al., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308. 10.Kundu, M. and L. Liu, Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors. Journal of Power Sources, 2013. 243: p. 676-681. 11.Alias, N. and A.A. Mohamad, Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries. Journal of King Saud University-Engineering Sciences, 2015. 27(1): p. 43-48. 12.Chao, D., et al., A High‐Rate and Stable Quasi‐Solid‐State Zinc‐Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018. 30(32): p. 1803181. 13.Wei, T., et al., High-rate and durable aqueous zinc ion battery using dendritic V10O24· 12H2O cathode material with large interlamellar spacing. Electrochimica Acta, 2018. 287: p. 60-67. 14.Parker, J.F., et al., Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science, 2017. 356(6336): p. 415-418. 15.Hao, J., et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochimica Acta, 2018. 259: p. 170-178. 16.Mo, F., et al., A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Science Bulletin, 2018. 63(16): p. 1077-1086. 17.Ming, J., et al., Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering: R: Reports, 2019. 135: p. 58-84. 18.Ashassi-Sorkhabi, H., P. La’le Badakhshan, and E. Asghari, Electrodeposition of three dimensional-porous Ni/Ni (OH) 2 hierarchical nano composite via etching the Ni/Zn/Ni (OH) 2 precursor as a high performance pseudocapacitor. Chemical Engineering Journal, 2016. 299: p. 282-291. 19.Yang, G.-W., C.-L. Xu, and H.-L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications, 2008(48): p. 6537-6539. 20.Bresser, D., et al., Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material. Chemistry of Materials, 2013. 25(24): p. 4977-4985. 21.Torabi, M. and S. Sadrnezhaad, Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries. Journal of Power Sources, 2011. 196(1): p. 399-404. 22.Yu, Y., et al., Doping mechanism of Zn 2+ ions in Zn-doped TiO 2 prepared by a sol–gel method. CrystEngComm, 2015. 17(27): p. 5074-5080. 23.Feng, L.L., et al., MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Research Letters, 2014. 9. 24.Qin, Y., et al., In situ fabrication of porous-carbon-supported α-MnO 2 nanorods at room temperature: application for rechargeable Li–O 2 batteries. Energy & Environmental Science, 2013. 6(2): p. 519-531. 25.Fei, J., et al., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials, 2008. 20(3): p. 452-456. 26.Feng, L., et al., MnO 2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale research letters, 2014. 9(1): p. 290. 27.Li, Z., et al., Rational growth of various α-MnO2 hierarchical structures and β-MnO2 nanorods via a homogeneous catalytic route. Crystal growth & design, 2005. 5(5): p. 1953-1958. 28.Cao, J., et al., Fabrication of γ-MnO 2/α-MnO 2 hollow core/shell structures and their application to water treatment. Journal of materials chemistry, 2011. 21(40): p. 16210-16215. 29.Xu, M., et al., Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. The Journal of Physical Chemistry C, 2007. 111(51): p. 19141-19147. 30.Li, W.N., et al., Hydrothermal synthesis of structure‐and shape‐controlled manganese oxide octahedral molecular sieve nanomaterials. Advanced Functional Materials, 2006. 16(9): p. 1247-1253. 31.Hashem, A., et al., Green synthesis of nanosized manganese dioxide as positive electrode for lithium-ion batteries using lemon juice and citrus peel. Electrochimica Acta, 2018. 262: p. 74-81. 32.Duan, X., et al., Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties. CrystEngComm, 2012. 14(12): p. 4196-4204. 33.Alfaruqi, M.H., et al., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chemistry of Materials, 2015. 27(10): p. 3609-3620. 34.Hu, P., et al., Highly Durable Na2V6O16· 1.63 H2O Nanowire Cathode for Aqueous Zinc-Ion. 35.Jia, Z., B. Wang, and Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Materials Chemistry and Physics, 2015. 149: p. 601-606. 36.Xu, C., et al., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angewandte Chemie International Edition, 2012. 51(4): p. 933-935. 37.Sun, W., et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. Journal of the American Chemical Society, 2017. 139(29): p. 9775-9778. 38.Zhang, N., et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature communications, 2017. 8(1): p. 405. 39.Alfaruqi, M.H., et al., A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochemistry Communications, 2015. 60: p. 121-125. 40.Yuan, C., et al., Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochimica Acta, 2014. 116: p. 404-412. 41.He, P., et al., High‐Performance Aqueous Zinc–Ion Battery Based on Layered H2V3O8 Nanowire Cathode. Small, 2017. 13(47): p. 1702551. 42.Kasiri, G., et al., An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochimica Acta, 2016. 222: p. 74-83. 43.Li, G., et al., Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2 (PO4) 3. Nano Energy, 2016. 25: p. 211-217. 44.Kundu, D., et al., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy, 2016. 1(10): p. 16119. 45.Wang, F., et al., Highly reversible zinc metal anode for aqueous batteries. Nature materials, 2018. 17(6): p. 543. 46.Zhang, N., et al., Cation-deficient spinel ZnMn2O4 cathode in Zn (CF3SO3) 2 electrolyte for rechargeable aqueous Zn-ion battery. Journal of the American Chemical Society, 2016. 138(39): p. 12894-12901. 47.Liu, Z., P. Bertram, and F. Endres, Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. Journal of Solid State Electrochemistry, 2017. 21(7): p. 2021-2027. 48.Wang, L.-P., et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochimica Acta, 2017. 244: p. 172-177. 49.Xu, D., et al., Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochimica Acta, 2014. 133: p. 254-261. 50.Zhang, L., et al., Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Scientific reports, 2015. 5: p. 18263. 51.Dawut, G., et al., High-performance rechargeable aqueous Zn-ion batteries with a poly (benzoquinonyl sulfide) cathode. Inorganic Chemistry Frontiers, 2018. 5(6): p. 1391-1396. 52.Pan, C., R.G. Nuzzo, and A.A. Gewirth, ZnAl x Co2–x O4 Spinels as Cathode Materials for Non-Aqueous Zn Batteries with an Open Circuit Voltage of≤ 2 V. Chemistry of Materials, 2017. 29(21): p. 9351-9359. 53.Vu, T.D., P.K. Duy, and H. Chung, Nickel foam–caged Ag-Au bimetallic nanostructure as a highly rugged and durable SERS substrate. Sensors and Actuators B: Chemical, 2019. 282: p. 535-540. 54.Fan, S.-f., et al., Compressive properties and energy absorption characteristics of open-cell nickel foams. Transactions of Nonferrous Metals Society of China, 2017. 27(1): p. 117-124. 55.Zhang, J., et al., Construction of ZnO@ Co3O4-loaded nickel foam with abrasion resistance and chemical stability for oil/water separation. Surface and Coatings Technology, 2019. 357: p. 244-251. 56.Xia, Y., et al., Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance. Journal of Power Sources, 2015. 283: p. 125-131. 57.Zangari, G., Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings, 2015. 5(2): p. 195-218. 58.Behboudi-Khiavi, S., et al., Facile pulse elecrodeposition of LixMnO2 nano-structures as high performance cathode materials for lithium ion battery. Electrochimica Acta, 2018. 261: p. 491-502. 59.Edison, T.N.J.I., et al., Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance. Journal of the Taiwan Institute of Chemical Engineers, 2019. 60.Wang, N., et al., High-performance asymmetric micro-supercapacitors based on electrodeposited MnO 2 and N-doped graphene. Nanotechnology, 2019. 61.Zhou, T., et al., Zinc ions doped poly (aniline-co-m-aminophenol) for high-performance supercapacitor. Synthetic Metals, 2015. 199: p. 169-173. 62.Cheng, J., et al., Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC Advances, 2016. 6(43): p. 37189-37194. 63.Poonguzhali, R., et al., Influence of Zn doping on the electrochemical capacitor behavior of MnO 2 nanocrystals. RSC Advances, 2015. 5(56): p. 45407-45415. 64.Radhamani, A., M.K. Surendra, and M.R. Rao, Zn doped δ-MnO2 nano flakes: An efficient electrode material for aqueous and solid state asymmetric supercapacitors. Applied Surface Science, 2018. 450: p. 209-218. 65.You, Z., et al., Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors. Applied Surface Science, 2012. 258(20): p. 8117-8123. 66.Devaraj, S. and N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. The Journal of Physical Chemistry C, 2008. 112(11): p. 4406-4417. 67.Naduvath, J., et al., Electrochemical synthesis of novel Zn-doped TiO 2 nanotube/ZnO nanoflake heterostructure with enhanced DSSC efficiency. Nano-micro letters, 2016. 8(4): p. 381-387. 68.Hong, Y.J., et al., Multifunctional Wearable System that Integrates Sweat‐Based Sensing and Vital‐Sign Monitoring to Estimate Pre‐/Post‐Exercise Glucose Levels. Advanced Functional Materials, 2018. 28(47): p. 1805754.
|