跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/15 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張証婷
研究生(外文):Chang, Cheng-Ting
論文名稱:誘導多能性幹細胞分化運動神經元之光遺傳調控
論文名稱(外文):Optogenetic Modulation of iPSC-derived Motor Neurons with Adeno-associated Virus Transfection of Optogene
指導教授:林顯豐
指導教授(外文):Lin, Shien-Fong
口試委員:陳三元盧懷恩胡瑜峰林顯豐
口試委員(外文):Chen, San-YuanLu, Huai-EnHu, Yu-FengLin, Shien-Fong
口試日期:2018-08-23
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:52
中文關鍵詞:光遺傳學腺相關病毒人類誘導多能性幹細胞運動神經元
外文關鍵詞:optogeneticsadeno-associated virus (AAV)induced pluripotent stem cells (iPSC)motor neurons
相關次數:
  • 被引用被引用:0
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光遺傳學是一項技術,可通過非侵入性光刺激對生物系統進行有針對性和快速的控制。Channelrhodopsin-2(ChR2)是一種膜蛋白,能夠透過光激發對膜離子通道進行細胞調節。傳統轉基因技術可能限制光遺傳學在誘導多能性幹細胞(iPSC)中的臨床應用。本研究測試了ChR2可通過病毒轉染至神經前驅細胞(NPC)而在iPSC衍生的神經元中表達。結果顯示ChR2通過病毒轉染至NPC而在iPSC分化為運動神經元中長時間穩定表達。藉由藍光激發的神經元能夠調節膜電壓,並且使用全細胞膜片鉗技術觀察到的神經元具有去極化現象,光學激活 的神經元也顯示出與運動神經元一致的自發放電模式。我們的研究結果表明攜帶ChR2基因的運動神經元可以在長時間內維持ChR2基因表達,藉由光學調控該特定細胞群體中的作用。本論文提供光基因病毒轉染方法可能有益於iPSC研究和未來臨床應用。
Optogenetics is a technology that allows targeted and fast control of biological systems with noninvasive optical stimulation. Channelrhodopsin-2 (ChR2) is a membrane protein that enables cellular regulation of transmembrane ion conductance through light-gated pores. Previous methods of transgenic approach may limit the clinical application of optogenetics in human induced pluripotent stem cells (iPSC). This study tested the hypothesis that ChR2 can be expressed in iPSC-derived neurons through AAV transfection to the neuronal progenitor cells (NPC). The cultured NPCs were transfected with ChR2 optogene using AAV with a vector concentrations of 3.25×10^13 vg/mL. The experimental procedure included cloning of vectors, virus purification, transfection of cultured neurons cells and patch-clamp electrophysiological measurement of the derived neurons. The results showed that ChR2 was stably expressed for at least 20 days in human iPSC-derived motor neurons through AAV transfection to the NPC. The neurons exposed to 430 nm blue light stimulation enabled regulation of membrane voltage and depolarized the cells from −55 mV to −15 mV observed with the whole-cell patch-clamp technique. The optically activated neurons also showed a spontaneous firing pattern consistent with that of the motor neurons. Our results demonstrated that iPSC-derived NPC carrying ChR2 optogene differentiated into motor neurons can maintain ChR2 gene expression in an extended period of time, thus allowing optical manipulation of activity in this specific cell population. The AAV optogene transfection method may benefit iPSC research and future clinical applications.
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions vi
Table Captions viii
Chapter 1 Introduction 1
1.1 Motor Neuron Disease 1
1.2 Amyotrophic lateral scleerosis (ALS) 2
1.2.1 Description and clinical symptoms 2
1.3 Induced pluripotent stem cells (iPSC) 3
1.3.1 Historical overview 3
1.3.2 Generation of iPSC 5
1.3.3 iPSC reprogramming 5
1.4 Optogenetics 7
1.4.1 Mechanism 10
1.4.2 Application in medical neuroscience 11
1.5 Motivation 12
1.6 Objectives 13
Chapter 2 Cell Culture 14
2.1 Materials and Methods 14
2.1.1 Culture Conditions 15
2.1.2 Differentiation of neural progenitor cells 17
2.1.3 Characterization of motor neurons 19
2.2 Design Goals 21
2.3 Characterization of iPSC 22
2.3.1 Detection of expression of exogenous reprogramming factors 22
2.3.2 Flow cytometry of pluripotent markers 23
2.3.3 Expression of pluripotency-related markers were analyzed 24
2.3.4 Differentiate into the three germ layers in vitro demonstrated 25
Chapter 3 Development of Recombinant AAV Vectors 27
3.1 Adeno-associated virus (AAV) History 27
3.2 Materials and Methods 27
3.2.1 Plasmid Construction 28
3.2.2 Viral Purification 29
3.3 AAV Transfection of neural progenitor cells 31
3.4 Optogenetics in neural progenitor cells 31
3.4.1 Statistics 32
3.4.2 Analyzed trans-differentiation efficiency 33
Chapter 4 Experimental Results 34
4.1 Electrophysiological recording 34
4.1.1 Membrane potential 35
4.1.2 Whole-cell patch-clamp technique 36
Chapter 5 Establishment of a iPSC-derived MNs co-culture with muscle cell 39
5.1 Assembly of co-culture 39
5.1.1 Neuromuscular junction with myotube 41
5.1.2 Muscle contraction 43
Chapter 6 Conclusions and Future Work 44
6.1 Conclusions 44
6.2 Future works 44
References 45
Appendix 51
[1] Wijesekera L.C and Leigh P.N., “Amyotrophic lateral sclerosis.” in Orphanet Journal of Rare Diseases, 2009;4:3, Feb. 2009.
[2] HÖKE, Ahmet, “Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans?” in Nature Clinical Practice Neurology, pp. 448–454, Aug. 2006.
[3] Takahashi, K.; Yamanaka, S, ”Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” in Cell, pp. 663–676, Aug. 2006.
[4] Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S, ”Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” in Cell, pp. 861–872, Nov. 2007.
[5] Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al., “Induced pluripotent stem cell lines derived from human somatic cells,” in Science, pp. 1917–1920, Dec. 2007.
[6] Biancalana V, Laporte J. “Diagnostic use of Massively Parallel Sequencing in Neuromuscular Diseases: Towards an Integrated Diagnosis,” in Journal of Neuromuscular Diseases, pp. 193–203, Sep. 2015
[7] Dupuis L, Echaniz-Laguna A. ”Skeletal Muscle in Motor Neuron Diseases: Therapeutic Target and Delivery Route for Potential Treatments,” in Current Drug Targets, pp. 1250-1261, Oct. 2010.
[8] Kim JK and Monani UR, ”Augmenting the SMN Protein to Treat Infantile Spinal Muscular Atrophy,” in neuron, pp. 1001–1003, Mar. 2018.
[9] Zarei S, Carr K, Reiley L, et al, “A comprehensive review of amyotrophic lateral sclerosis,” in Surgical Neurology International, 2015;6:171, Nov. 2015.
[10] Kanning, K. C., Kaplan, A. & Henderson, C. E., ”Motor neuron diversity in development and disease. Annu,” in Rev. Neurosci, pp. 409–440, Jun. 2016.
[11] Lomen-Hoerth, C., Murphy, J., Langmore, S., Kramer, J. H., Olney, R. K., “Are amyotrophic lateral sclerosis patients cognitively normal?” in Neurology, pp. 1094–1097, Apr. 2003.
[12] Van Den Bosch, L., Van Damme, P., Bogaert, E., Robberecht, W., “The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis,” in Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, pp. 1068-1082, Nov. 2006.
[13] Wilson, K. G., Scott, J. F., Graham, I. D., Kozak, J. F., Chater, S., Viola, R. A., Curran, D., “Attitudes of terminally ill patients toward euthanasia and physician-assisted suicide,” in Archives of Internal Medicine, pp. 2454–2460. Sep. 2000.
[14] Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., ... & Yabuuchi, A., “ Epigenetic memory in induced pluripotent stem cells,” in Nature, pp. 285–290. Sep. 2010.
[15] Medvedev, S.P., A.I. Shevchenko, and S.M. Zakian, “Induced Pluripotent Stem Cells: Problems and Advantages When Applying Them in Regenerative Medicine,” in Acta Naturae 2010;2:2, pp. 18–28, Jul. 2010.
[16] Herberts, Carla A, Marcel SG Kwa, and Harm PH Hermsen, “Risk Factors in the Development of Stem Cell Therapy,” in Journal of Translational Medicine, 2011;9:29, Mar. 2011.
[17] Singh VK, Saini A, Kalsan M, Kumar N, Chandra R., “Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In Silico Diagnostics.” in Frontiers in Cell and Developmental Biology, 2016;4:134, Nov. 2016.
[18] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors," in Cell, 2007;131:5, pp. 861–872, Nov. 2007.
[19] Han, Ji Woong, and Young-sup Yoon, “Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming.” in Antioxidants & Redox Signaling, 2011;15:7, pp. 1799–1820, Oct. 2011.
[20] Zacharias DG, Nelson TJ, Mueller PS, Hook CC, “The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells?” in Mayo Clinic Proceedings, 2011;86:7, pp. 634–640, Jul. 2011.
[21] Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R., “Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery.” in Frontiers in cell and developmental biology, Feb. 2015.
[22] Stadtfeld, M and Hochedlinger, K., “Induced pluripotency: history, mechanisms, and applications.” in Genes & development, pp. 2239–2263, Oct. 2010.
[23] Bartel, D. P., “MicroRNAs: genomics, biogenesis, mechanism, and function,” in Cell, pp. 281–297, Jan. 2004.
[24] Petit, I., Kesner, N. S., Karry, R., Robicsek, O., Aberdam, E., Müller, F. J., Ben-Shachar, D., ” Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders,” in Stem cell research, pp. 134–140, Jan. 2012.
[25] Liang, G. and Zhang, Y, “Genetic and epigenetic variations in iPSCs: potential causes and implications for application,” in Cell stem cell, pp. 149-159, Aug. 2013.
[26] Chin, E. W., & Goh, E. L., “Studying neurological disorders using induced pluripotent stem cells and optogenetics,” in Neural regeneration research, pp. 1720–1722, Nov. 2015.
[27] Heng, B. C. and Fussenegger, M., ”Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification,” in Engineering and Analyzing Multicellular Systems, pp. 75–94, Apr. 2014.
[28] Ebben, J. D., Zorniak, M., Clark, P. A., and Kuo, J. S., “Introduction to induced pluripotent stem cells: advancing the potential for personalized medicine,” in World neurosurgery, pp. 270–275, Oct. 2011.
[29] Deisseroth, K., “Optogenetics,” in Nature methods, pp. 26–29, Dec. 2010.
[30] Boyden, E. S., “A history of optogenetics: the development of tools for controlling brain circuits with light,” in F1000 biology reports, May. 2011.
[31] Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Bamberg, E., “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” in Proceedings of the National Academy of Sciences, pp. 13940–13945, Nov. 2003.
[32] Hegemann, P., Nagel, G., “From channelrhodopsins to optogenetics,” in EMBO molecular medicine, pp. 173–176, Feb. 2013.
[33] AzimiHashemi, N., Erbguth, K., Vogt, A., Riemensperger, T., Rauch, E., Woodmansee, D., Kattner, L., “Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools,” in Nature communications, Dec. 2014.
[34] Maki, B. A., Cummings, K. A., Paganelli, M. A., Murthy, S. E., & Popescu, G. K., “One-channel cell-attached patch-clamp recording,” in Journal of visualized experiments: JoVE, Jun. 2014.
[35] Deisseroth, K., “Optogenetics: 10 years of microbial opsins in neuroscience,” in Nature neuroscience, pp. 1213–1225, Sep. 2015.
[36] Miller, R. J., “Multiple calcium channels and neuronal function,” in Science, pp. 46–52. Jan. 1987.
[37] Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., Deisseroth, K., “Optogenetics in neural systems,” in Neuron, pp. 9–34, Jul. 2011.
[38] McIsaac, R. S., Bedbrook, C. N., Arnold, F. H., ”Recent advances in engineering microbial rhodopsins for optogenetics,” in Current opinion in structural biology, pp. 8–15, Aug .2015.
[39] Jorgenson, L. A., Newsome, W. T., Anderson, D. J., Bargmann, C. I., Brown, E. N., Deisseroth, K., Marder, E., “The BRAIN Initiative: developing technology to catalyse neuroscience discovery,” in Phil. Trans. R. Soc. B, 370, May. 2015.
[40] Sullivan, M. R., Nimmerjahn, A., Sarkisov, D. V., Helmchen, F., & Wang, S. S. H., “In vivo calcium imaging of circuit activity in cerebellar cortex,” Journal of neurophysiology, pp. 1636–1644, Aug. 2005.
[41] Dalkara, D., Byrne, L. C., Klimczak, R. R., Visel, M., Yin, L., Merigan, W. H., Schaffer, D. V., “In vivo–directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous,” in Science translational medicine, vol. 5, pp. 189ra76, Jun. 2013.
[42] Gradinaru, V., Thompson, K. R., and Deisseroth, K., ”eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications,” in Brain cell biology, pp. 129–139. Aug. 2008.
[43] Busskamp, V., Picaud, S., Sahel, J. A., and Roska, B., “Optogenetic therapy for retinitis pigmentosa,” in Gene therapy, 19, pp. 169–175. Oct. 2011.
[44] Umemura, A., Jaggi, J. L., Hurtig, H. I., Siderowf, A. D., Colcher, A., Stern, M. B., Baltuch, G. H., “Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients,” in Journal of neurosurgery, vol. 98, no. 4, pp. 779–784, Apr. 2003.
[45] Park, D. W., Schendel, A. A., Mikael, S., Brodnick, S. K., Richner, T. J., Ness, J. P., Thongpang, S., “Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications,” in Nature communications, 5, Oct. 2014.
[46] Malik, N., and Rao, M. S., “A review of the methods for human iPSC derivation,” in In Pluripotent stem cells, pp. 23–33, Mar. 2013.
[47] Kay, M. A., “State-of-the-art gene-based therapies: the road ahead,” in Nature Reviews Genetics, 12 ,pp. 316–328, Apr. 2011.
[48] Faisca, P., and Desmecht, D., “Sendai virus, the mouse parainfluenza type 1: a longstanding pathogen that remains up-to-date,” in Research in veterinary science, vol. 82, pp, 115–125, Feb. 2007.
[49] Lin, J. Y., Lin, M. Z., Steinbach, P., Tsien, R. Y., “Characteriation of engineered channelrhodopsin variants with improved properties and kinetics,” in Biophysical journal, pp. 1803–1814. Mar. 2009.
[50] Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M., “Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome,” in Proceedings of the Japan Acemy, pp, 348–362. 2009
[51] Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H. K., Beyer, T. A., Datti, A., and Wrana, J. L., “Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming,” in Cell stem cell, vol. 7, pp, 64–77, Jul. 2010.
[52] Meissner, A., “Epigenetic modifications in pluripotent and differentiated cells,” in Nature biotechnology, 28 , pp. 1079–1088, Oct. 2010.
[53] Weissleder, R., and Mahmood, U., “Molecular imaging,” in Radiology, vol. 219, no. 2, pp. 316–333, May. 2001.
[54] Bråve, A., Ljungberg, K., Wahren, B., and Liu, M. A., “Vaccine delivery methods using viral vectors,” in Molecular pharmaceutics, vol. 4, no. 1, pp. 18–32, Feb. 2007.
[55] Daya, S., & Berns, K. I., “Gene therapy using adeno-associated virus vectors,” in Clinical microbiology reviews, vol. 21, no. 4, pp. 583–593, Oct. 2008.
[56] Van der Neut, R., “Targeted Gene Disruption: Applications in Neurobiology,” in Journal of neuroscience methods, 71, pp. 19–27, Jan. 1997.
[57] Haberman, R.P., McCown, T.J., and Samulski, R.J., “Inducible Long-Term Gene Expression in Brain with Adeno-Associated Virus Gene Transfer,” in Gene therapy, 5, pp. 1604–1611, Dec. 1998.
[58] Burger, C., Nash, K., and Mandel, R.J., “Recombinant Adeno-Associated Viral Vectors in the Nervous System,” in Human Gene Therapy, 16, pp. 781–791, Jul. 2005.
[59] Zolotukhin, S., Potter, M., Zolotukhin, I., Sakai, Y., Loiler, S., Fraites Jr, T. J., and Flotte, T. R.,” Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors,” in Methods, vol. 28, no. 2, pp, 158–167, Oct. 2002.
[60] Schwiening, C. J., “A brief historical perspective: Hodgkin and Huxley,” in The Journal of physiology, pp, 2571–2575, May. 2012.
[61] Molleman, A., Patch clamping: an introductory guide to patch clamp electrophysiology, John Wiley & Sons Ltd, West Sussex, 2003.
[62] Zaydman, M. A., Silva, J. R., & Cui, J., “Ion channel associated diseases: overview of molecular mechanisms,” in Chemical reviews, vol.112, no.12, 6319–6333, Dec. 2012.
[63] Hille, Bertil. Ion channels of excitable membranes, vol. 507. Sunderland, MA: Sinauer, 2001.
[64] Almers, W., “Gating currents and charge movements in excitable membranes,” in Reviews of Physiology Biochemistry and Pharmacology, vol. 82, pp, 96–190, 1978.
[65] Johnston, D., and Wu, S. M. S., Foundations of cellular neurophysiology, MIT press, 1994.
[66] Sasaki, J., Spudich, J. L., “Proton transport by sensory rhodopsins and its modulation by transducer-binding,” in Biochimica et Biophysica Acta (BBA)-Bioenergetics, pp. 230–239. Aug. 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top