跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳珍汝
研究生(外文):Chen-Ju Wu
論文名稱:利用快速熱退火在砷化鎵基板上成長p型氧化鋅
論文名稱(外文):Growth of p-type ZnO on GaAs Sbstrate Using Rapid Thermal Annealing
指導教授:雷伯薰
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:51
中文關鍵詞:電漿有機金屬化學氣相沈積法p型氧化鋅砷化鎵快速熱退火
外文關鍵詞:plasmametal-organic chemical vapor depositionp-type ZnOgallium arsinerapid thermal process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅,一個II-VI族的化合物半導體,在室溫下能隙約為3.37eV,且有很大的激子束縛能,約為60meV,近年來成為非常吸引人的材料,特別是在紫外光段短波長的發光二極體及雷射裝置。
本研究是使用電漿輔助有機金屬化學氣相沉積法在砷化鎵基板上成長氧化鋅薄膜,再利用快速熱退火製程將基板中的砷原子擴散進入n型氧化鋅薄膜中,使其轉變成為p型氧化鋅薄膜,我們分為兩個主題,第一個是通氮氣,另一個是通氧氣進行快速熱退火,探討不同快速退火的溫度及持溫時間對氧化鋅薄膜特性、光電特性與表面型態之影響。我們證實快速熱退火有助於砷原子在擴散時,會進入適當的位置。在成長氧化鋅溫度為185℃,RTA 425℃ 通入氮氣,由 n 型轉 p 型,電洞濃度為 2.38 × 1020 cm-3,電阻率為 6.88 × 10-4 Ωcm,移動率為 12.7 cm2/Vs,而在成長氧化鋅溫度為190℃,RTA 450℃ 通入氧氣,由 n 型轉 p 型,電洞濃度為 3.07 × 1020 cm-3,電阻率為 7.31 × 10-4 Ωcm,移動率為 24.1 cm2/Vs。


Zinc oxide (ZnO) is one of II-VI compound semiconductor with a wide band gap of 3.37 eV at room temperature and a large excition binding energy of 60meV, which makes it be an attractive material recently, especially in the application of blue and ultraviolet light-emitting diodes and laser.
In this thesis, the ZnO film growth on gallium arsine (GaAs) substrate was prepared by double plasma-enhanced metal-organic chemical vapor deposition system (DPEMOCVD). Then, the as-grown ZnO film was treated with rapid thermal process by rapid thermal annealing. With the thermal energy, the arsenic atoms can diffuse into the ZnO film as a p-type dopant. Two subjects were investigated in this thesis, including annealing in oxygen and nitrogen ambient. The effects of annealing temperature and time related to the optoelectronic characteristics of ZnO film and surface structure were investigated in this thesis in oxygen and nitrogen. The experiment results indicated that under the condition of grows substrates temperature at annealing temperature of 425℃ and annealing time of 1 minute in nitrogen ambient, the hole concentration, carrier mobility, and resistivity is 2.38 × 1020 cm-3, 6.88 × 10-4 Ωcm, and 12.7 cm2/Vs, respectively. In other word, under the condition of grows substrates temperature at annealing temperature of 450℃ and annealing time of 1 minute in oxygen ambient, the hole concentration, carrier mobility, and resistivity is 3.07 × 1020 cm-3, 7.31 × 10-4 Ωcm , and 24.1 cm2/Vs, respectively.


目錄
中文摘要 …………………………………………………………... i
英文摘要 …………………………………………………………... ii
目錄 …………………………………………………………... iv
表目錄 …………………………………………………………... vi
圖目錄 …………………………………………………………... vii
第一章 序論…………………………………………………....... 1
1.1 前言…………………………………………………....... 1
1.2 研究動機………………………………………………... 1
第二章 基本理論………………………………………………... 3
2.1 MOCVD原理…………………………………………... 3
2.2 MOCVD系統…………………………………………… 3
2.3 氧化鋅(ZnO)特性…………………………………….... 4
2.4 砷化鎵(GaAs)特性……………………………………... 6
2.5 電漿(Plasma)……………………………………………. 6
2.6 p-type 摻雜(Doping).…….…………………………….. 6
2.7 快速熱退火製程(Rapid thermal Annealing;RTA) ……. 7
2.8 擴散機制(Diffusion Mechanisms) ……………………... 7
2.8.1 空位擴散(Vacancy Diffusion) …………………………. 8
2.8.2 格隙擴散(Interstitial Diffusion) ………………………... 9
2.9 實驗流程………………………………………………... 10
2.10 實驗前置準備…………………………………………... 10
2.10.1 有機金屬來源…………………………………………... 10
2.10.2 試片準備………………………………………………... 10
2.10.3 成長氧化鋅薄膜環境…………………………………... 10
2.11 實驗分析………………………………………………... 11
2.11.1 霍爾效應與量測原理…………………………………... 11
2.11.2 掃描式電子顯微鏡……………………………………... 13
2.11.3 光激發光量測系統(PL) ………………………………... 14
第三章 研究內容與實驗流程…………………………………... 15
3.1 調變PEMOCVD成長ZnO環境…………………….... 17
3.1.1 富鋅條件下成長ZnO……………………....................... 17
3.1.2 富氧條件下成長ZnO……………………....................... 18
3.2 調變RTA保護氣體的氣氛環境……………………...... 19
3.2.1 氮氣為RTA保護氣體氣氛……………………………. 19
3.2.2 氧氣為RTA保護氣體氣氛……………………………. 19
第四章 結果分析...……………….……………………………... 20
4.1 富鋅條件下成長ZnO………...………………………… 20
4.1.1 成長基板溫度為160℃………………………………..... 20
4.1.2 成長基板溫度為185℃……………………………......... 21
4.1.3 成長基板溫度為190℃……………………………......... 23
4.2 富氧條件下成長ZnO………...………………………… 24
4.2.1 成長基板溫度為160℃………………………………..... 24
4.2.2 成長基板溫度為185℃……………………………......... 26
4.2.3 成長基板溫度為190℃……………………………......... 27
4.3 RTA保護氣體的氣氛環境…………………………....... 36
4.3.1 氮氣…………………………………………………....... 36
4.3.2 氧氣…………………………………………………....... 37
4.3.2.1 成長基板溫度為160℃………………………………..... 37
4.3.2.2 成長基板溫度為185℃……………………………......... 39
4.3.2.3 成長基板溫度為190℃……………………………......... 41
4.4 p-type ZnO薄膜活期…………………………………… 44
第五章 結論……………………………………………………... 45
參考文獻 …………………………………………………………... 46
英文論文大綱 …………………………………………………………... 48
簡歷 …………………………………………………………... 51


[1]張正坤,2005,”一種新穎低成本室溫可控制型態合成氧化鋅奈米結構之方法”,國立成功大學 材料科學與工程學系 碩士論文.
[2]Deuk-Kyu Hwang, et al.,2003,”Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction”,Journal of Crystal Growth 254 p449–455.
[3]H. Kumano, et al.,2000,”Luminescence properties of ZnO films grown on GaAs substrates by molecular-beam epitaxy excited by electron-cyclotron resonance oxygen plasma”,Journal of Crystal Growth 214/215 p280–283.
[4]F.K. Shan, et al.,2004,”Substrate effects of ZnO thin films prepared by PLD technique”,Journal of the European Ceramic Society 24 p1015–1018.
[5]J.R. Botha, et al.,2007,”Arsenic-related recombination in MOVPE-grown ZnO/GaAs films”,Superlattices and Microstructures 42 p26–32.
[6]V. Khranovskyy, et al.,2008,”Morphology, electrical and optical properties of undoped ZnO layers deposited on silicon substrates by PEMOCVD”,Thin Solid Films 516 p1396–1400
[7]Ganga Prasad, et al.,2007,”Growth of ZnO nano films on Sapphire/GaAs/ Si substrates”,Solid State Physics Laboratory, Lucknow Road, Delhi 110054.
[8]Yung-Chen Cheng, et al.,2011,”Stable p-type ZnO films grown by atomic layer deposition on GaAs substrates and treated by post-deposition rapid thermal annealing”,Thin Solid Films TSF-29016; No of Pages 4.
[9]Woong Lee, et al.,2004,”Fabrication and properties of ZnO films grown on GaAs(001) substrates by radio frequency (rf) magnetron sputtering”,Applied Surface Science 221 p32–37.
[10]Alan G. Thompson,1997,”MOCVD technology for semiconductors”,Materials Letters 30 p255–263.
[11]楊朝宗,2008,”使用有機金屬化學氣相沉積法在Al2O3(0001)成長鎵摻雜氧化鋅之研究”,國立東華大學 光電工程研究所 碩士論文.
[12]Kyu-Hyun Bang, et al.,2003,”Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition”,Journal of Crystal Growth 250 p437–443.
[13]Ü. Özgür, et al.,2005,”A comprehensive review of ZnO materials and devices”,Journal of Applied Physics 98, 041301.
[14]Y.R. Ryu, et al.,2000,”Synthesis of p-type ZnO flms”,Journal of Crystal Growth 216 p330–334.
[15]Veeramuthu Vaithianathan, et al.,2006,”Doping of As, P and N in laser deposited ZnO films”,Journal of Crystal Growth 287 p85–88.
[16]B. Claflin, et al.,2006,”Persistent n-type photoconductivity in p-type ZnO”,Journal of Crystal Growth 287 p16–22.
[17]Hong Seong Kang, et al.,2006,”Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film”,APPLIED PHYSICS LETTERS 89, 181103.
[18]Yen-Chin Huang, et al.,2011,”Annealing effects on the p-type ZnO films fabricated on GaAs substrate by atmospheric pressure metal organic chemical vapor deposition”,Journal of Alloys and Compounds 509 p1980–1983.
[19]S.P. Wang, et al.,2009,”A facile route to arsenic-doped p-type ZnO films”,Journal of Crystal Growth 311 p3577–3580.
[20]陳建隆,2008,發光二極體之原理與製程,全華圖書股份有限公司.
[21]Tae-Hyoung Moon, et al.,2005,”The fabrication and charccterization of ZnO UV detector”,Applied Surface Science 240 p280–285.
[22]Donald A. Neamen著,2003,半導體物理及元件,李世鴻譯,麥格羅希爾出版;臺商圖書發行,第三版.
[23]高慧芳,2010,”電漿輔助有機金屬化學氣相沉積法成長氧化鋅薄膜”,國立虎尾科技大學 光電與材料科技研究所 碩士論文.
[24]Jingchang Sun, et al.,2008,”Annealing effects on electrical and optical properties of ZnO films deposited on GaAs by metal organic chemical vapor deposition”,Applied Surface Science 254 p7482–7485.
[25]李昀修,2009,”利用原子層沉積技術成長 p 型氧化鋅之研究”,國立台灣大學工學院材料科學與工程學系 碩士論文.
[26]Sukit Limpijumnong, et al.,2004,”Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc Oxide”,PHYSICAL REVI EW LETTERS VOLUME 92, NUMBER 15.
[27]任昕緯,2009,”利用直流磁控濺鍍法製備不同摻雜方式之p型氧化鋅薄膜”,國立東華大學材料科學與工程研究所 碩士論文.
[28] S. B. Zhang, et al.,2001,” Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO” ,PHYSICAL REVIEW B, VOLUME 63, 075205


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top