|
References: 1.Liao, X., et al., Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest, 2011. 121(7): p. 2736-49. 2.Chawla, A., Control of macrophage activation and function by PPARs. Circ Res, 2010. 106(10): p. 1559-69. 3.Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13. 4.Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95. 5.Roszer, T., Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm, 2015. 2015: p. 816460. 6.Jablonski, K.A., et al., Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS One, 2015. 10(12): p. e0145342. 7.He, C. and A.B. Carter, The Metabolic Prospective and Redox Regulation of Macrophage Polarization. J Clin Cell Immunol, 2015. 6(6). 8.Zhang, Y., et al., ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res, 2013. 23(7): p. 898-914. 9.Oh, J., et al., Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem, 2012. 287(15): p. 11629-41. 10.Rao, J., et al., ATF6 Mediates a Pro‐Inflammatory Synergy Between ER Stress and TLR Activation in the Pathogenesis of Liver Ischemia‐Reperfusion Injury. American Journal of Transplantation, 2014. 14(7): p. 1552-1561. 11.Yang, F., et al., ER-stress regulates macrophage polarization through pancreatic EIF-2alpha kinase. Cell Immunol, 2019. 336: p. 40-47. 12.Shan, B., et al., The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol, 2017. 18(5): p. 519-529. 13.Liang, J., et al., MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. The Journal of Experimental Medicine, 2010. 207(13): p. 2959. 14.Kapoor, N., et al., Transcription Factors STAT6 and KLF4 Implement Macrophage Polarization via the Dual Catalytic Powers of MCPIP. The Journal of Immunology, 2015. 194(12): p. 6011. 15.Mantovani, A., et al., The origin and function of tumor-associated macrophages. Immunol Today, 1992. 13(7): p. 265-70. 16.Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010. 141(1): p. 39-51. 17.Mantovani, A. and A. Sica, Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol, 2010. 22(2): p. 231-7. 18.Mantovani, A., et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 2002. 23(11): p. 549-555. 19.Yu, M., et al., Prognostic value of tumor-associated macrophages in pancreatic cancer: a meta-analysis. Cancer Manag Res, 2019. 11: p. 4041-4058. 20.Zhou, L., et al., Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res, 2006. 98(9): p. 1177-85. 21.Skalniak, L., et al., Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. Febs j, 2009. 276(20): p. 5892-905. 22.Liang, J., et al., A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem, 2008. 283(10): p. 6337-46. 23.Matsushita, K., et al., Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009. 458: p. 1185. 24.Mizgalska, D., et al., Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. Febs j, 2009. 276(24): p. 7386-99. 25.Uehata, T. and S. Akira, mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochim Biophys Acta, 2013. 1829(6-7): p. 708-13. 26.Lin, R.-J., et al., MCPIP1 Suppresses Hepatitis C Virus Replication and Negatively Regulates Virus-Induced Proinflammatory Cytokine Responses. The Journal of Immunology, 2014. 193(8): p. 4159. 27.Habacher, C. and R. Ciosk, ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Bioessays, 2017. 39(9). 28.Iwasaki, H., et al., The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nature Immunology, 2011. 12: p. 1167. 29.Kolattukudy, P., MCPIP: a key player in macrophage polarization. Oncotarget, 2015. 6(30): p. 28531-28532. 30.Suzuki, Hiroshi I., et al., MCPIP1 Ribonuclease Antagonizes Dicer and Terminates MicroRNA Biogenesis through Precursor MicroRNA Degradation. Molecular Cell, 2011. 44(3): p. 424-436. 31.Roy, A. and P.E. Kolattukudy, Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal, 2012. 24(11): p. 2123-31. 32.Niu, J., et al., Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem, 2008. 283(21): p. 14542-51. 33.Wang, K., et al., Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J Mol Cell Biol, 2011. 3(6): p. 360-8. 34.Han, Q., et al., HCC-Derived Exosomes: Critical Player and Target for Cancer Immune Escape. Cells, 2019. 8(6). 35.Ma, W.T., et al., The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol, 2019. 10: p. 1140. 36.Yao, Y., X.H. Xu, and L. Jin, Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol, 2019. 10: p. 792. 37.Cheng, H., et al., Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview. Front Oncol, 2019. 9: p. 421. 38.Horlbeck, M.A., et al., Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife, 2016. 5. 39.Redecke, V., et al., Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nature methods, 2013. 10(8): p. 795-803.
|