|
[1] J. G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp. 268–278, Mar. 1973. [2] G. Fettweis and H. Meyr, “A 100 MBit/s Viterbi decoder chip: Novel architecture and its realization,” in Proc. IEEE Int. Conf. Communications (ICC), vol. 2, pp. 463–467, Aug. 1990. [3] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4, Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877–1885, Dec. 1992. [4] C. M. Rader, “Memory management in a Viterbi decoder,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1399–1401, Sep. 1981. [5] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding. New York: McGraw-Hill, 1979. [6] DS-UWB Physical Layer Submission to 802.15 Task Group 3a, IEEE, Jan. 2005. [7] Channel Modeling Sub-committee Report Final, IEEE 802.15 Task Group 3a, Dec. 2002. [8] Z. Tian and B. Sadler, “Weighted energy detection of ultra-wideband signals,” in Proc. IEEE Signal Processing Workshop on Advances in Wireless Communications, pp. 158-168, June 2005. [9] A. Rabbachin, I. Oppermann, and B. Denis, "ML time-of-arrival estimation based on low complexity UWB energy detection," in Proc. IEEE Int. Conf. on Ultra-Wideband (ICUWB), pp. 598-604, Sep. 2006. [10] Z. Tian, V. Lottici, “Low-Complexity ML Timing Acquisition for UWB Communications in Dense Multipath,” IEEE Trans. Commun., vol. 4, no. 6, pp. 3031-3038, Nov. 2005 [11] A. Kocian, I. Land and B. H. Fleury, “Joint Channel Estimation, Partial Successive Interference Cancellation, and Data Decoding for DS-CDMA Based on the SAGE Algorithm,” IEEE Trans. Commun., vol. 55, no. 6, pp. 1231-1241, Jun. 2007. [12] Kim, B. S. Bae, J. Song, I. Kim, S. Y. Kwon, H. Kwon, “A Comparative Analysis of Optimum and Suboptimum Rake Receivers in Impulsive UWB Environment,” IEEE Trans. Vehicular Technology, vol. 55, no. 6, pp. 1797-1804, Nov. 2006 [13] I. M. Onyszchuk, K. M. Cheung, and O. Collins, “Quantization loss in convolutional decoding,” IEEE Trans. Commun., vol. 41, no. 2, pp. 261–265, Feb. 1993. [14] A. K. Yeung and J. M. Rabaey, “A 210 Mb/s radix-4 bit-level pipelined Viterbi decoder,” in IEEE Int. Solid-State Circuit Conf. (ISSCC) , pp. 88–89, Feb. 1995. [15] T. Gemmeke, M. Gansen, and T. G. Noll, “Implementation of scalable power and area efficient high-throughput Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 941–948, Jul. 2002. [16] G. Fettweis, R. Karabed, P. H. Siegel, and H. K. Thapar, “Reduced-complexity Viterbi detector architectures for partial response signalling,” in Proc. GLOBECOM, vol. 1, Singapore, pp. 559–563, Nov. 1995. [17] K. Page and P. M. Chau, “Improved architectures for the add-compare-select operation in long constraint length Viterbi decoding,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 151–155, Jan. 1998. [18] I. Lee and J. L. Sonntag, “A new architecture for the fast Viterbi algorithm,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1624–1628, Oct. 2003. [19] C.C. Lin, Y.H. Shih, H.C. Chang, and C.Y. Lee, “Design of a power-reduction Viterbi decoder for WLAN applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1148–1156, Jun. 2005. [20] G. Feygin and P. Gulak, “Architectural tradeoffs for survivor sequence memory management in Viterbi decoders,” IEEE Trans. Commun., vol. 41, no. 3, pp. 425–429, Mar. 1993. [21] N.-H. Chang, Cell-based IC physical design and verification with SOC Encounter, National Chip Implementation Center, R.O.C., July 2005.
|