|
[1] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries, Journal of Materials Chemistry A 4 (26) (2016) 10038–10069. [2] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons, Materials Horizons 3 (6) (2016) 487–516. [3] A. M. Stephan, Review on gel polymer electrolytes for lithium batteries, European polymer journal 42 (1) (2006) 21–42. [4] T.-F. Yeh, W.-L. Huang, C.-J. Chung, I. T. Chiang, L.-C. Chen, H.-Y. Chang, W.-C. Su, C. Cheng, S.-J. Chen, H. Teng, Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation- Wavelength-Independent Photoluminescence, The Journal of Physical Chemistry Letters 7 (11) (2016) 2087–2092. [5] R. Hiorns, Polymer Handbook, 4th edn, Edited by J Brandup, EH Immergut and EA Grulke, Associate Editors A Abe and DR Bloch, John Wiley and Sons, New York, 1999, Polymer International 49 (7) (2000) 807–807. [6] A. R. Kampf, HANDBOOK OF MINERALOGY, VOLUME: V. Borates, Carbonates, Sulfates. By John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols. Mineral Data Publishing, Tucson, Arizona; 2003, 813 p., American Mineralogist 88 (11-12) (2003) 1842–1842. [7] S.-H. Wang, Y.-Y. Lin, C.-Y. Teng, Y.-M. Chen, P.-L. Kuo, Y.-L. Lee, C.-T. Hsieh, H. Teng, Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries, ACS Applied Materials & Interfaces 8 (23) (2016) 14776–14787. [8] Y. M. Chen, S. T. Hsu, Y. H. Tseng, T. F. Yeh, S. S. Hou, J. S. Jan, Y. L. Lee, H. S. Teng, Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries, Small 14 (12) (2018) 11. [9] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy & Environmental Science 7 (12) (2014) 3857– 3886. [10] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Highpower all-solid-state batteries using sulfide superionic conductors, Nature Energy 1 (2016) 16030. [11] S. B. Aziz, T. J. Woo, M. F. Z. Kadir, H. M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, Journal of Science: Advanced Materials and Devices 3 (1) (2018) 1–17. [12] A. Maitra, A. Heuer, Cation transport in polymer electrolytes: A microscopic approach, Physical review letters 98 (22) (2007) 227802. [13] Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes, Solid State Ionics 121 (1) (1999) 141–156. [14] K. S. Ngai, S. Ramesh, K. Ramesh, J. C. Juan, A review of polymer electrolytes: fundamental, approaches and applications, Ionics 22 (8) (2016) 1259–1279. [15] H.-S. Min, D.-W. Kang, D.-Y. Lee, D.-W. Kim, Gel polymer electrolytes prepared with porous membranes based on an acrylonitrile/methyl methacrylate copolymer, Journal of Polymer Science Part B: Polymer Physics 40 (14) (2002) 1496–1502. [16] R. D. Groot, P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, The Journal of Chemical Physics 107 (11) (1997) 4423–4435. [17] L. Cheng, J. Yan, G.-N. Zhu, J.-Y. Luo, C.-X. Wang, Y.-Y. Xia, General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation, Journal of Materials Chemistry 20 (3) (2010) 595–602. [18] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, World Scientific, 2011, pp. 171–179. [19] W. Young, W. Kuan, T. H. Epps III, Block copolymer electrolytes for rechargeable lithium batteries, Journal of Polymer Science Part B: Polymer Physics 52 (1) (2014) 1–16. [20] M. Dissanayake, Conductivity variation of the liquid electrolyte, EC: PC: LiCF3SO3 with salt concentration, Sri Lankan Journal of Physics 7. [21] X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage, Advanced Energy Materials 8 (7) (2018) 1702184. [22] H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chemical Society Reviews 46 (3) (2017) 797–815. [23] G. N. Njikang, M. Gauthier, Interfacial properties of amphiphilic dendritic polymers, 2005, pp. 375–418. [24] H.-P. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Materials Research Bulletin 13 (2) (1978) 117–124. [25] H. Kim, Y. Ding, P. A. Kohl, LiSICON–ionic liquid electrolyte for lithium ion battery, Journal of Power Sources 198 (2012) 281–286. [26] V. Thangadurai, W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics 12 (1) (2006) 81–92. [27] T. Takahashi, H. Iwahara, Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell, Energy Conversion 11 (3) (1971) 105–111. [28] J. Feng, L. Lu, M. Lai, Lithium storage capability of lithium ion conductor Li1:5Al0:5Ge1:5(PO4)3, Journal of Alloys and Compounds 501 (2) (2010) 255–258. [29] Y. Deng, C. Eames, J.-N. Chotard, F. Lalère, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier, M. S. Islam, Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4 solid electrolytes, Journal of the American Chemical Society 137 (28) (2015) 9136–9145. [30] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A lithium superionic conductor, Nature materials 10 (9) (2011) 682. [31] Y. Mo, S. P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor material, Chemistry of Materials 24 (1) (2011) 15–17. [32] X. Liang, L. Wang, Y. Jiang, J. Wang, H. Luo, C. Liu, J. Feng, In-channel and In-plane Li ion diffusions in the superionic conductor Li10GeP2S12 Probed by solid-state NMR, Chemistry of Materials 27 (16) (2015) 5503–5510. [33] Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors, Nature materials 14 (10) (2015) 1026. [34] A. M. Stephan, K. Nahm, Review on composite polymer electrolytes for lithium batteries, Polymer 47 (16) (2006) 5952–5964. [35] W. H. Meyer, Polymer Electrolytes for Lithium-Ion Batteries, Advanced Materials 10 (6) (1998) 439– 448. [36] M. Armand, Polymers with Ionic Conductivity, Advanced Materials 2 (6-7) (1990) 278–286. [37] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ionics 11 (1) (1983) 91–95. [38] D. E. Fenton, Complexes of alkali metal ions with poly (ethylene oxide), Polymer 14 (1973) 589. [39] J. Kalhoff, G. G. Eshetu, D. Bresser, S. Passerini, Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives, ChemSusChem 8 (13) (2015) 2154–2175. [40] I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-Liquid-Based Polymer Electrolytes for Battery Applications, Angewandte Chemie International Edition 55 (2) (2016) 500–513. [41] M. J. Park, I. Choi, J. Hong, O. Kim, Polymer electrolytes integrated with ionic liquids for future electrochemical devices, Journal of Applied Polymer Science 129 (5) (2013) 2363–2376. [42] S. Tan, Y. J. Ji, Z. R. Zhang, Y. Yang, Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries, ChemPhysChem 15 (10) (2014) 1956–1969. [43] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chemical Society Reviews 40 (5) (2011) 2525–2540. [44] F. Croce, G. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature 394 (6692) (1998) 456. [45] V. D. Noto, S. Lavina, G. A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future, Electrochimica Acta 57 (2011) 4–13. [46] Y.-C. Jung, S.-M. Lee, J.-H. Choi, S. S. Jang, D.-W. Kim, All solid-state lithium batteries assembled with hybrid solid electrolytes, Journal of The Electrochemical Society 162 (4) (2015) A704–A710. [47] H. W. Kim, P. Manikandan, Y. J. Lim, J. H. Kim, S.-c. Nam, Y. Kim, Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries, Journal of Materials Chemistry A 4 (43) (2016) 17025–17032. [48] W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, H.-W. Lee, Y. Cui, Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers, Nano Letters 15 (4) (2015) 2740–2745. [49] Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu, A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries, Journal of Power Sources 301 (2016) 47–53. [50] Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, Ionic conductivity of electrolytes formed from PEOLiCF3SO3 complex low molecular weight poly(ethylene glycol), Journal of Materials Science 22 (5) (1987) 1845–1849. [51] S. Choi, S. Jo, W. Lee, Y.-R. Kim, An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications, Advanced Materials 15 (23) (2003) 2027–2032. [52] P. V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), British Polymer Journal 7 (5) (1975) 319–327. [53] O. Borodin, G. D. Smith, Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from molecular dynamics simulations, Macromolecules 39 (4) (2006) 1620–1629. [54] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A 3 (38) (2015) 19218–19253. [55] P. Johansson, First principles modelling of amorphous polymer electrolytes: Li+–PEO, Li+–PEI, and Li+–PES complexes, Polymer 42 (9) (2001) 4367–4373. [56] C.-L. Chen, H. Teng, Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate), Journal of Materials Chemistry 21 (3) (2011) 628–632. [57] H. Akashi, K. Sekai, K.-i. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries, Electrochimica Acta 43 (10) (1998) 1193–1197. [58] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries, Journal of Power Sources 196 (16) (2011) 6742–6749. [59] G. B. Appetecchi, F. Croce, B. Scrosati, Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes, Electrochimica Acta 40 (8) (1995) 991–997. [60] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries, Journal of Power Sources 196 (23) (2011) 10156–10162. [61] M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, High lithium ionic conductivity of polymeric solid electrolytes, Die Makromolekulare Chemie, Rapid Communications 2 (12) (1981) 741–744. [62] R. Prasanth, V. Aravindan, M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemical characterization, Journal of Power Sources 202 (2012) 299–307. [63] F. Krok, J. R. Dygas, B. Misztal-Faraj, Z. Florjańczyk, W. Bzducha, Impedance and polarisation studies of new lithium polyelectrolyte gels, Journal of Power Sources 81-82 (1999) 766–771. [64] S.-H. Wang, S.-S. Hou, P.-L. Kuo, H. Teng, Poly(ethylene oxide)-co-Poly(propylene oxide)-Based Gel Electrolyte with High Ionic Conductivity and Mechanical Integrity for Lithium-Ion Batteries, ACS Applied Materials & Interfaces 5 (17) (2013) 8477–8485. [65] M. M. Nasef, R. R. Suppiah, K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization, Solid State Ionics 171 (3) (2004) 243–249. [66] B. Choi, Y. Kim, H. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes, Electrochimica Acta 45 (8-9) (2000) 1371–1374. [67] C. Liew, R. Durairaj, S. Ramesh, Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes with LiTFSI as Doping Salt, PloS one 9 (7) (2014) e102815. [68] C.-W. Liew, S. Ramesh, R. Durairaj, Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics, Journal of Materials Research 27 (23) (2012) 2996–3004. [69] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, The ionic conductivity and mechanical property of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries, Journal of membrane science 329 (1-2) (2009) 56–59. [70] M. S. Su’ait, A. Ahmad, M. Y. A. Rahman, Ionic conductivity studies of 49% poly (methyl methacrylate)- grafted natural rubber-based solid polymer electrolytes, Ionics 15 (4) (2009) 497–500. [71] D. Zhou, G. Wang, W. Li, G. Li, C. Tan, M. Rao, Y. Liao, Preparation and performances of porous polyacrylonitrile–methyl methacrylate membrane for lithium-ion batteries, Journal of Power Sources 184 (2) (2008) 477–480. [72] S. Ramesh, C.-W. Liew, E. Morris, R. Durairaj, Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes, Thermochimica Acta 511 (1-2) (2010) 140–146. [73] N.-S. Choi, Y.-G. Lee, J.-K. Park, J.-M. Ko, Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend, Electrochimica acta 46 (10-11) (2001) 1581–1586. [74] I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, E. Cazzanelli, Investigation of ionic conduction and mechanical properties of PMMA–PVdF blend-based polymer electrolytes, Solid State Ionics 177 (5-6) (2006) 581–588. [75] Z. Wen, T. Itoh, T. Uno, M. Kubo, O. Yamamoto, Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly (ethylene oxide-co-propylene oxide) and ceramic filler, Solid State Ionics 160 (1-2) (2003) 141–148. [76] N. N. Sa’adun, R. Subramaniam, R. Kasi, Development and characterization of poly (1-vinyl pyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes, The Scientific World Journal 2014. [77] K.-H. Lee, Y.-G. Lee, J.-K. Park, D.-Y. Seung, Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer, Solid State Ionics 133 (3- 4) (2000) 257–263. [78] J. Stevens, W. Wieczorek, Ionically conducting polyether composites, Canadian journal of chemistry 74 (11) (1996) 2106–2113. [79] Z. Li, G. Su, D. Gao, X. Wang, X. Li, Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte, Electrochimica acta 49 (26) (2004) 4633–4639. [80] Z. Li, G. Su, X. Wang, D. Gao, Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles, Solid State Ionics 176 (23-24) (2005) 1903–1908. [81] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. Hendrickson, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochimica Acta 46 (16) (2001) 2457–2461. [82] M. Stolarska, L. Niedzicki, R. Borkowska, A. Zalewska, W. Wieczorek, Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler, Electrochimica Acta 53 (4) (2007) 1512–1517. [83] J.-M. Tarascon, A. Gozdz, C. Schmutz, F. Shokoohi, P. Warren, Performance of Bellcore’s plastic rechargeable Li-ion batteries, Solid State Ionics 86 (1996) 49–54. [84] M. Caillon-Caravanier, B. Claude-Montigny, D. Lemordant, G. Bosser, Absorption ability and kinetics of a liquid electrolyte in PVDF–HFP copolymer containing or not SiO2, Journal of power sources 107 (1) (2002) 125–132. [85] A. Zalewska, M. Walkowiak, L. Niedzicki, T. Jesionowski, N. Langwald, Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro-and nano-sized surface-modified silicas, Electrochimica Acta 55 (4) (2010) 1308–1313. [86] M. Walkowiak, A. Zalewska, T. Jesionowski, D. Waszak, B. Czajka, Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries, Journal of power sources 159 (1) (2006) 449–453. [87] S. Mogurampelly, O. Borodin, V. Ganesan, Computer simulations of ion transport in polymer electrolyte membranes, Annual review of chemical and biomolecular engineering 7 (2016) 349–371. [88] H. Kasemägi, M. Klintenberg, A. Aabloo, J. O. Thomas, Molecular dynamics simulation of the LiBF4– PEO system containing Al2O3 nanoparticles, Solid State Ionics 147 (3-4) (2002) 367–375. [89] P. Johansson, P. Jacobsson, TiO2 nanoparticles in polymer electrolytes: surface interactions, Solid State Ionics 170 (1-2) (2004) 73–78. [90] S. Mogurampelly, V. Ganesan, Effect of nanoparticles on ion transport in polymer electrolytes, Macromolecules 48 (8) (2015) 2773–2786. [91] B. Hanson, V. Pryamitsyn, V. Ganesan, Mechanisms underlying ionic mobilities in nanocomposite polymer electrolytes, ACS Macro Letters 2 (11) (2013) 1001–1005. [92] W. Wieczorek, A. Zalewska, D. Raducha, Z. Florjańczyk, J. Stevens, Composite polyether electrolytes with Lewis acid type additives, The Journal of Physical Chemistry B 102 (2) (1998) 352–360. [93] L. V. Ganapatibhotla, J. K. Maranas, Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes, Macromolecules 47 (11) (2014) 3625–3634. [94] R. S. Kavathekar, P. Dev, N. J. English, J. M. D. MacElroy, Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface, Molecular Physics 109 (13) (2011) 1649–1656. [95] L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations, Journal of computational chemistry 30 (13) (2009) 2157– 2164. [96] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society 118 (45) (1996) 11225–11236. [97] J. N. Canongia Lopes, J. Deschamps, A. A. H. Pádua, Modeling Ionic Liquids Using a Systematic All- Atom Force Field, The Journal of Physical Chemistry B 108 (6) (2004) 2038–2047. [98] J. N. Canongia Lopes, A. A. H. Pádua, Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions, The Journal of Physical Chemistry B 108 (43) (2004) 16893–16898. [99] E. G. Brandt, A. P. Lyubartsev, Systematic Optimization of a Force Field for Classical Simulations of TiO2–Water Interfaces, The Journal of Physical Chemistry C 119 (32) (2015) 18110–18125. [100] H. Tang, D. Liu, Y. Zhao, X. Yang, J. Lu, F. Cui, Molecular Dynamics Study of the Aggregation Process of Graphene Oxide in Water, The Journal of Physical Chemistry C 119 (47) (2015) 26712–26718. [101] F. S. Emami, V. Puddu, R. J. Berry, V. Varshney, S. V. Patwardhan, C. C. Perry, H. Heinz, Force field and a surface model database for silica to simulate interfacial properties in atomic resolution, Chemistry of Materials 26 (8) (2014) 2647–2658. [102] C. Schumacher, J. Gonzalez, M. Pérez-Mendoza, P. A. Wright, N. A. Seaton, Design of hybrid organic/ inorganic adsorbents based on periodic mesoporous silica, Industrial & engineering chemistry research 45 (16) (2006) 5586–5597. [103] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1-2 (2015) 19–25. [104] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519. [105] S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984) 255–268. [106] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. 31 (1985) 1695– 1697. [107] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics, J. Appl. Phys. 52 (1981) 7182–7190. [108] T. Darden, D. York, L. Pedersen, Particle mesh Ewald An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (1993) 10089–10092. [109] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577–8596. [110] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem. 18 (1997) 1469–1472. [111] P. Hoogerbrugge, J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL (Europhysics Letters) 19 (3) (1992) 155. [112] R. D. Groot, T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, The Journal of Chemical Physics 108 (20) (1998) 8713–8724. [113] P. Español, P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhysics Letters (EPL) 30 (4) (1995) 191–196. [114] A. Schlijper, P. Hoogerbrugge, C. Manke, Computer simulation of dilute polymer solutions with the dissipative particle dynamics method, Journal of Rheology 39 (3) (1995) 567–579. [115] R. D. Groot, K. Rabone, Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants, Biophysical journal 81 (2) (2001) 725–736. [116] A. Maiti, S. McGrother, Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension, The Journal of chemical physics 120 (3) (2004) 1594–1601. [117] S.-H. Chou, H.-K. Tsao, Y.-J. Sheng, Morphologies of multicompartment micelles formed by triblock copolymers, The Journal of chemical physics 125 (19) (2006) 194903. [118] S. Yamamoto, Y. Maruyama, S.-a. Hyodo, Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules, The Journal of chemical physics 116 (13) (2002) 5842–5849. [119] Y.-J. Sheng, C.-H. Nung, H.-K. Tsao, Morphologies of star-block copolymers in dilute solutions, The Journal of Physical Chemistry B 110 (43) (2006) 21643–21650. [120] S. Yamamoto, S.-A. Hyodo, Budding and fission dynamics of two-component vesicles, The Journal of chemical physics 118 (17) (2003) 7937–7943. [121] J. C. Shillcock, R. Lipowsky, Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations, The Journal of chemical physics 117 (10) (2002) 5048– 5061. [122] G. M. Bristow, W. F. Watson, Cohesive energy densities of polymers. Part 1.-Cohesive energy densities of rubbers by swelling measurements, Trans. Faraday Soc. 54 (0) (1958) 1731–1741. [123] R. Groot, K. Rabone, Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants, Biophysical Journal 81 (2) (2001) 725 – 736. [124] A. Shrake, J. A. Rupley, Environment and exposure to solvent of protein atoms. Lysozyme and insulin, Journal of Molecular Biology 79 (2) (1973) 351–371. [125] S.-H. Wang, P.-L. Kuo, C.-T. Hsieh, H. Teng, Design of poly (acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries, ACS applied materials & interfaces 6 (21) (2014) 19360–19370.
|