跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴匯霖
研究生(外文):Huei-LinLai
論文名稱:鉛直分層材料對滲流水錘效應之影響
論文名稱(外文):Influence of Vertical Delaminated Material on Seepage-Hammer
指導教授:謝正倫謝正倫引用關係
指導教授(外文):Chjeng-Lun Shieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:89
中文關鍵詞:大規模崩塌鉛直滲流滲流水錘分層試驗
外文關鍵詞:large scale landslidedelaminated materialseepage-hammerpore water pressure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
因氣候變遷影響降雨趨於極端,故極端坡地災害對於台灣影響日益嚴重,因此為了消除、降低生命財產損失,透過災害風險管理的掌握是政府、學界重視之課題。本研究將探究在大規模崩塌發生之水力機制,藉由一維鉛直入滲砂箱試驗探討滲流水錘現象於材料分層情況下之影響,並驗證前人推導之理論式是否可用於材料分層的情況下,以提供建置預警系統的學理依據。以降雨引致大規模崩塌為主,自案例收集與文獻回顧,瞭解邊坡內部滲流是劣化土壤強度的水力條件之一。根據前人提述已在一維單層材料實驗映證滲流水錘現象的發生,故本研究設計一維分層材料實驗來觀察滲流水錘現象在分層情況下之變化,以提供未來研究數據資料,來觀察入滲過程所產生的現象。
實驗成果呈現分層與不分層材料,皆可發現滲流水錘的作用,差異在於發生時間快慢、孔隙水壓上升量大小及強度大小,透過實驗中下方是否可排氣的條件,可發現其對於上述提及之差異有顯著與不顯著的影響,當下方為不可排氣條件時差異顯著。藉由本研究實驗數據來驗證前人推導之理論式是否可用於一維分層材料中,經過與本研究的27種滲流水錘數據比較後可知適用,未來可以使用現有邊坡模型分析其運動、變形過程與穩定性,同時內嵌多相流理論,試以完整地描述水力條件於邊坡內部的作用,作為大規模崩塌預警機制之前期研究。
2009 years, Siaolin Villlage occurred large scale landslide by Typhoon Marakot, it caused a large number of houses damaged and lots of people get killed during the large scale landslide, which our study focus on the mechanism of large scale landslide due to the rainfall. By previous research, we found that the mechanism large scale landslide of Siaolin Village maybe caused by the seepage-hammer. There were some previous research which are one-dimensional and two-dimensional simple substance experiments, and our research will focus on the pore water pressure change in delaminated material experiments.
Due to simple substance experiments, we found that the seepage-hammer will locate at the interface of underground water level and impermeable layer; when the situation was delaminated material, seepage-hammer will locate at the interface between each materials. Due to our research, found that seepage-hammer will happen at the interface of impermeable layer, underground water level, delaminated material of different soil type.
摘要 I
Abstract II
誌謝 VIII
目錄 IX
圖目錄 XI
表目錄 XIII
參數表 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方法 2
1.3 研究架構 3
第二章 文獻回顧 4
2.1 事件的回顧 4
2.1.1 歷史事件 4
2.1.2 小結 8
2.2 入滲對崩塌影響研究的相關文獻回顧 10
2.2.1 入滲解析研究的回顧 10
2.2.2 邊坡穩定性分析方法的回顧 24
2.3 砂箱實驗研究之回顧 29
2.3.1 一維單層砂箱入滲試驗 30
2.3.2 一維分層砂箱入滲試驗 32
2.3.3 小結 32
第三章 實驗設計 33
3.1 實驗目的 33
3.2 固相結構之物理性質 36
3.2.1 篩分析試驗 36
3.2.2 比重試驗 38
3.2.3 飽和滲透係數試驗 39
3.2.4 顆粒孔隙率試驗 41
3.3 感測器介紹與率定 42
3.3.1 孔隙水壓力計 43
3.3.2 電子計重磅秤 45
3.4 資料擷取器介紹與設定 46
第四章 實驗結果 47
4.1 實驗數據量測 48
4.2 入滲實驗之現象 49
4.2.1 (Sand-1)-O之實驗現象 49
4.2.2 (Sand-1)-B之實驗現象 51
4.2.3 (Sand-1/Sand-2)-O之實驗現象 53
4.2.4 (Sand-1/Sand-2)-B之實驗現象 55
4.2.5 (Sand-1/Sand-2/Sand-1)-O之實驗現象 57
4.2.6 (Sand-1/Sand-2/Sand-1)-B之實驗現象 59
第五章 數據分析 61
5.1 定性分析 61
5.1.1 滲流水錘現象發生的條件 61
5.1.2 滲流水錘現象不發生的條件 65
5.2 定量分析 66
5.2.1 滲流水錘現象的發生時間 67
5.2.2 滲流水錘現象的水錘強度 70
5.2.3 滲流水錘現象的水錘斜率 73
5.2.4 安全係數的計算 76
第六章 結論與建議 79
6.1 結論 80
6.2 建議 81
參考文獻 82
[1]孔祥言(1999). 高等滲流力學, 中國科學技術大學出版社
[2]李錫堤, 董家鈞, 林銘郎. (2009). 小林村災變之地質背景探討, 地工技術(122),87-94.
[3]林美聆, & 王幼行. (1999). 地表水及地下水對土石流破壞型態之影響. 地工技術, (74), 29-38.29-38.
[4]林錫宏, & 紀宗吉 Geological Characteristics and Deformation Mechanisms of the Large Deep-Seated Rockslide in Lushan, Nantou County經濟部中央地質調查所彙刊(2012),1-26
[5]姚凱超等 (2013). 自動量測技術.
[6]張峻閔. (2014). 以實驗探討滑坡在滲流情況下破壞的機制與條件. 成功大學水利及海洋工程學系學位論文.
[7]林郁峰. (2015). 多相流理論應用於鉛直滲流過程之解析. 成功大學水利及海洋工程學系學位論文.
[8]吳哲銘. (2016). 滲流水錘現象於二維砂箱試驗之研究. 成功大學水利及海洋工程學系學位論文.
[9]陳主惠, 張守陽, 周憲德, & 李伯亨. (2004). 入滲對非飽和邊坡淺層崩塌發生機制之研究. 中華水土保持學報, 35(1), 69-77.
[10]黃景川, 駱建利, 朱奕璋, 胡立康, 李金龍, 張家薰, & 雲世傑. (2011). 降雨引發淺層邊坡破壞機制. Journal of Chinese Soil and Water Conservation, 42(3), 184-195.

[11]經濟部中央地質調查所(2011), 大規模潛在山崩機制調查與活動性觀測成果報告(1/4).
[12]經濟部中央地質調查所(2012), 大規模潛在山崩機制調查與活動性觀測成果報告(2/4).
[13]經濟部中央地質調查所(2013), 大規模潛在山崩機制調查與活動性觀測成果報告(3/4).
[14]經濟部中央地質調查所(2014), 大規模潛在山崩機制調查與活動性觀測成果報告(4/4).
[15]葉信富, 鄭佳元, & 李振誥. (2010). 降雨誘發松茂地滑區淺層坡地崩塌之研究. 中華水土保持學報, 41(2), 113-142.
[16]劉哲欣, 吳亭燁, 陳聯光, 林聖琪, 林又青, 陳樹群, & 周憲德. (2011). 臺灣地區重大岩體滑動案例之土方量分析. Journal of Chinese Soil and Water Conservation, 42(2), 150-159.
[17]行政院農業委員會水土保持局南投分局(2008), 廬山地滑監測及後續治理規劃成果報告.

[18]Angeli, M. G., Gasparetto, P., Menotti, R. M., Pasuto, A., & Silvano, S. (1996). A visco-plastic model for slope analysis applied to a mudslide in Cortina d'Ampezzo, Italy. Quarterly Journal of Engineering Geology and Hydrogeology, 29(3), 233-240.
[19]Bernadiner, M. G. (1998). A capillary microstructure of the wetting front.Transport in porous media, 30(3), 251-265.
[20]Bishop, Alan W., and G. E. Blight. Some aspects of effective stress in saturated and partly saturated soils. Geotechnique 13.3 (1963): 177-197.
[21]Bowen, R. M. (1976). Theory of mixtures. Continuum physics (Vol. III).Waltham: Academic Press.
[22]Campbell, R. H. (1975). Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California.
[23]Carman, P. C. (1937). Fluid flow through granular beds. Transactions of the Institute Tuition of Chemical Engineers, 15.
[24]Celia, M. A., & Binning, P. (1992). A mass conservative numerical solution for two‐phase flow in porous media with application to unsaturated flow. Water Resources Research, 28(10), 2819-2828.
[25]Collins, B. D., & Znidarcic, D. (2004). Stability analyses of rainfall induced landslides. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 362-372.
[26]Conte, E., & Troncone, A. (2011). Simplified approach for the analysis of rainfall-induced shallow landslides. Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 398-406. 
[27]Corey, A. T. (1994). Mechanics of immiscible fluids in porous media. Water Resources Publication.
[28]Currie, I. G. (2012). Fundamental mechanics of fluids. CRC Press.
[29]Das, B. M. (2013). Advanced soil mechanics. CRC Press.
[30]de Boer, I. R., & Ehlers, P. D. D. I. W. (1990). The development of the concept of effective stresses. Acta Mechanica, 83(1-2), 77-92.
[31]Demond, A. H., & Roberts, P. V. (1987). An Examination Of Relative Permeability Relations For Two‐Phase Flow In Porous Media1. Journal of the American Water Resources Association,23(4), 617-628.
[32]Flageollet, Jean-Claude, et al. Landslides and climatic conditions in the Barcelonnette and Vars basins (Southern French Alps, France). Geomorphology 30.1 (1999): 65-78.
[33]Glass, R. J., Steenhuis, T. S., & Parlange, J. Y. (1989). Mechanism for finger persistence in homogeneous, unsaturated, porous media: theory and verification. Soil Science, 148(1), 60-70.
[34]Heber Green, W., & Ampt, G. A. (1911). Studies on Soil Phyics. The Journal of Agricultural Science, 4(01), 1-24.
[35]Hill, D. E., & Parlange, J. Y. (1972). Wetting front instability in layered soils. Soil Science Society of America Journal, 36(5), 697-702.
[36]Hillel, D. (1980).Fundamentals of soil physics. Academic Press, Inc.(London) Ltd.

[37]Hubbert, M. K. (1940). The theory of ground-water motion. The Journal of Geology, 785-944.
[38]Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4), 610-623.
[39]Imaizumi, F. & Miyamoto, K. (2011). Non-dimensional parameters controlling occurrence and characteristic of landslides that provide sediment for debris flow development. 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padua, Italy
[40]Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water resources research, 36(7), 1897-1910.
[41]Laloui, L., Klubertanz, G., & Vulliet, L. (2003). Solid–liquid–air coupling in multiphase porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 27(3), 183-206.
[42]Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering,132(2), 131-142.
[43]Miyamoto, K. & Imaizumi, F. (2012). A theoretical explanation of triggering condition of deep-seated landslide, Proceedings of 3rd International Workshop on Multimodal Sediment Disasters, A-5,1-8.
[44]Miyazaki, T. (2005). Water flow in soils. CRC Press.
[45]Nield, D. A., & Bejan, A. (2006). Convection in porous media. Springer Science & Business Media.

[46]Perla, R., Cheng, T.T., and McClung, D.M.(1980). A two-parameter model of snow-avalanche motion. Journal of Glaciology, 26: 197-207.
[47]Prokešová, R., Medveďová, A., Tábořík, P., & Snopková, Z. (2013). Towards hydrological triggering mechanisms of large deep-seated landslides.Landslides, 10(3), 239-254.
[48]Robert, O. Goetz. (1971). Investigation into using air in the permeability testing of granular soils.
[49]Schuurman, I. E. (1966). The compressibility of an air/water mixture and a theoretical relation between the air and water pressures. Geotechnique, 16(4), 269-281.
[50]Sparks, A. D. W. (1965). Theoretical considerations of stress equations for partly saturated soils. Civil Eng Bull, Capetown Univ/S Afr/.
[51]Srinilta, S. A., Nielsen, D. R., & Kirkham, D. (1969). Steady flow of water through a two‐layer soil. Water Resources Research, 5(5), 1053-1063.
[52]Takagi, S. (1960). Analysis of the vertical downward flow of water through a two-layered soil. Soil Science, 90(2), 98-103.
[53]Terzaghi, K. (1996). Soil mechanics in engineering practice. John Wiley & Sons.
[54]Teunissen, J. A. M. (1982). Mechanics of a fluid-gas mixture in a porous medium. Mechanics of materials, 1(3), 229-237.
[55]Touma, J., & Vauclin, M. (1986). Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transport in Porous Media, 1(1), 27-55.
[56]Truesdell, C. (Ed.). (1965). Continuum mechanics. Gordon and Breach.
[57]Uchida, T., Yokoyama, O., Nishiguchi, Y., Suzuki, R., Takezawa, N., Tamura, K., & Hara, Y. (2011). Recent Advances of Methods for Prediction of Disasters Triggered by Deep Catastrophic Landslide. Journal of Chinese Soil and Water Conservation, 42(4), 344-353
[58]Van Asch, T. W., Malet, J. P., & Bogaard, T. A. (2009). The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Natural Hazards and Earth System Sciences, 9 (3), 2009.
[59]Van Asch, T. W., Van Beek, L. P. H., & Bogaard, T. A. (2007). Problems in predicting the mobility of slow-moving landslides. Engineering Geology, 91(1), 46-55.
[60]Warrick, A. W. (Ed.). (2001). Soil physics companion. CRC press.
[61]Wheeler, S. J. (1988). A conceptual model for soils containing large gas bubbles. Geotechnique, 38(3), 389-397.
[62]Wienhöfer, J., Lindenmaier, F., & Zehe, E. (2011). Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides. Vadose Zone Journal, 10(2), 496-511
[63]Wilson, L. G., & Luthin, J. N. (1963). Effect of air flow ahead of the wetting front on infiltration. Soil Science, 96(2), 136-143.
[64]Wyckoff, R. D., & Botset, H. G. (1936). The Flow of Gas-Liquid Mixtures Through Unconsolidated Sands. Journal of Applied Physics, 7(9), 325-345.

[65]Yang, H., Rahardjo, H., & Leong, E. C. (2006). Behavior of unsaturated layered soil columns during infiltration. Journal of Hydrologic Engineering, 11(4), 329-337.
[66]Yin, Y. P. (2011). Recent catastrophic landslides and mitigation in China.Journal of Rock Mechanics and Geotechnical Engineering, 3(1), 10-18.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top