跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/17 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃翔
研究生(外文):Hsiang Huang
論文名稱:尿素葉面施用對台茶十二號茶樹生長及品質相關內容物累積之影響
論文名稱(外文):Effect of Urea Foliar Application on Growth and Tea Quality Related Content of Tea Plants (Camellia sinensis L. TTES 12)
指導教授:陳右人陳右人引用關係阮素芬阮素芬引用關係
指導教授(外文):Iou-Zen ChenSu-Feng Roan
口試委員:林書妍
口試委員(外文):Shu-yen Lin
口試日期:2018-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:葉面施用尿素茶芽內容物新梢生長時機與劑量
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
茶樹(Camellia sinenesis L.)為葉用作物,栽培過程注重氮肥施用。氮肥過量施於土壤將造成環境壓力,利用率也不佳,因此利用葉面施肥輔助部分氮肥施用作為解決之道。本研究旨在探討葉面施用尿素的時機及劑量對茶樹新梢生長及品質相關內容物之影響。全部試驗皆使用台茶十二號品種茶樹,於2017年三月定植扦插苗於3.5公升波特缽中,進行施肥試驗處理。施肥之時機點為修剪初期、魚葉展開期、兩片真葉展開期,並以僅選擇其中一個時機點進行葉面施肥(三處理)、選擇其中兩個時機點進行葉面施肥(三處理)、選擇三個時機點進行葉面施肥(一處理)及不進行葉面施肥(一處理),未進行葉面施肥的時機點以土壤施肥補足總施用氮肥;劑量以施用單倍(0.5%,8毫升)及雙倍劑量(0.5%間隔五天共噴施兩次,共16毫升)尿素液肥,劑量與施肥時機點處理組合共計16個處理。從修剪開始算起,生長兩個月採收全部當季新生長枝條,調查枝條生長量、展開葉片數、萌發芽數等性狀。結果顯示,以雙倍劑量尿素施肥者有較多新梢枝條長度,選用兩個時機點葉面施肥與三個時機點皆葉面施肥者效果顯著高於不葉面施肥及僅葉面施肥一次者,但兩者比較之差異未達5%顯著差異。時機點「魚葉展開期」施肥經正向逐步迴歸分析,對於茶樹新梢生長長度沒有顯著影響。
2017年夏季試驗(五月至七月)去除魚葉展開期施肥處理,其餘時機點組合方式、劑量操作及生長量調查項目與2017年春季試驗相同,處此之外將採收枝條分為一心二葉部位及一心二葉以下部位,分別進行總游離胺基酸及總多元酚含量分析;並於2018年春季(三月至五月)再進行一次相同處理及調查、分析項目,以比較季節差異。春季整體生長勢緩慢,總含氮量低,試驗結束時已處於開面芽狀態。內容物累積濃度大致與夏梢一心二葉的含量一致,惟總游離胺基酸濃度在雙倍劑量組別有大量累積現象。從正向逐步回歸分析結果來看,在修剪初期、兩片真葉展開期進行土壤施肥之植株的氮施肥量,能夠用來預測當季梢中的總氮含量。兩次試驗比較下,夏季試驗整體生長勢強,總含氮量高,劑量處理在總含氮素量部分有顯現出差異;而且在試驗結束時枝條仍處於生長狀態。內容物累積量約有50%集中在一心二葉中,但不因劑量處理高,而發生總游離胺基酸大量累積情形。葉面施肥處理相較土壤施肥影響較多性狀的表現,而時機點以兩片真葉時期施肥對生長及內容物累積較具有影響性。
另一部分探討尿素葉面施肥吸收及代謝情況,試驗植物材料為萌發新梢之茶樹,全株噴施尿素水溶液,共兩處理處理,分別為施用0.5%尿素水溶液噴施一次隔128小時再施一次0.5%尿素水溶液及1%尿素水溶液一次。並於施用前、施用後1小時、2小時、4小時、8小時、16小時、32小時、64小時、128小時等9個時間點取樣分析,分析當季新梢已展開葉中尿素濃度;其中0.5%尿素施用組共分析兩個周期。尿素葉面施肥可以創造尿素在葉中累積高峰, 1%尿素水溶液可以在施用後1小時內,使葉片產生比0.5%尿素水溶液施用後的葉片,有更高的葉片尿素累積濃度,但隨後2-4小時會迅速降至穩定累積濃度之上限,兩者同於約在施用後五日降回施用前之尿素累積水準;而0.5%於第一次施肥後128小時再次施肥,追加調查同樣有類似第一次葉面施肥0.5%尿素的葉片尿素濃度累積高峰至再施肥64小時呈下降趨勢。此結果顯示,茶樹若要以葉面施肥追加氮素施肥量以選用0.5%尿素水溶液進行茶樹葉面施肥並間隔約128小時再施肥為佳。
Tea plants (Camellia sinenesis L.) are leafy plants. During producing process, nitrogen giving is concerned. Over-fertilization nitrogen in ground would threat economy other than low rate of nitrogen usage. Using foliar fertilization as partial nitrogen resource might be a solution to overcome the disadvantages. Main purposes of this research are to look into how foliar application effect on tea plant (Camellia sinensis L.) growth and tea quality related content in new-born flush. Foliar application or ground application at timing combination and urea dosage are two treatment factor.
In first experiment, ‘TTES 12’ tea plants were treated in 2017. ‘After cutting’, ‘fish leaf extend’, ‘two true leaf extend’ are three fertilization timings. Timing combinations are treatments that choose none, one, two and three fertilization timings for nitrogen foliar application and the others for ground nitrogen application. Taking urea as nitrogen source, dosage differentiates are operated by 0.5% 8ml urea solution applying once or 0.5% 8 ml urea solution applying twice, five days as time interval. At 60th days after cutting, whole new-born flushes were investigated and analyzed. Investigated item include length, number of extend leaf of new-born flush and number of emerge flush. Analysis items include total amino acid, total polyphenol and total nitrogen.
In 2017 spring trail, more average new-born flush length was showed in double dosage treatments. When concerning about foliar application times effect, choosing two timing and three timing for foliar fertilization are statistically no difference in average new-born flush length. But they still statistically higher than none foliar fertilization and foliar fertilization once. Multiple linear regression are used to analyze effect of ground fertilization and foliar fertilization at timings. Result shows that fertilizing at ‘fish leaf extend’ doesn’t help growing of new-born flush.
In 2017 summer trail, ‘fish leaf extend’ timing was excluded, another detail that way of treatments and investigate items are as spring trail. Collected new-born flushes are separated into one bud with two leaves and below part for content analysis. Repeated trail was practiced in 2018 spring again for comparing seasonal discrepancy.
General speaking, growth potential of tea plant in spring is weak. At the trial end, new-born flushes are all at ‘banjhi’ stage. Total nitrogen content is lower than summer sample, but total polyphenol concentration is as much as that in one bud with two leaves part in summer trail. Except for total amino acid concentration, samples for double dosage treatment have nearly twice as much as summer ones. According to multiple linear regression, amount of ground nitrogen fertilization at ‘after cutting’ and ‘two true leaves extend’ can be used to predict amount of total nitrogen in spring new-born flush.
In summer trail, growth potential of tea plants are high. At the trial end, new-born flushes are all at ‘growing’ stage. Almost 50% content concentrated in part of one bud with two leaves, but it didn’t happen to excess accumulation. According to multiple linear regression, foliar or ground fertilize at ‘two true leaves extend’ both can be used to predict amount of total nitrogen in summer new-born flush, but amount of nitrogen from foliar fertilization at this timing have higher correlation to it.
Another experiment explore that how leaves absorb and metabolism urea after urea foliar application. Tea plants with several new-born flush are treated urea solution for whole plant. Treatments are 1% urea solution applying once and 0.5% urea solution applying twice, 128 hours as time interval. Sampling at before urea spray, 1, 2, 4, 8, 16, 32, 64, 128 hours after urea spray, urea concentration in tea leaves of new-born flush are analyzed. Urea foliar application can make urea concentration increase in mature leaves. 1% urea solution treatment have higher instant cumulate than 0.5% urea solution treatment in one hour. Then they will reach stable leaf-urea-accumulating limit and decrease in similar variation trend. And both back to before-treated level after 128 hours. Continuing sampling for 0.5% urea solution treatment, second-time 0.5% urea spray make similar variation trend as the first time spraying. When 32 hours after second-time 0.5% urea spray, it has been in a downward trend. As a result, 0.5% urea solution and five days at least as time interval is more suitable for tea plant to urea foliar fertilize.
中文摘要 i
英文摘要 iii
目錄 v
圖目錄 vii
表目錄 ix
第一章、前言 1
第二章、文獻回顧 3
一、施肥管理在茶葉生產過程之重要性 3
二、氮肥施用方式 5
三、茶樹的營養生長與內容物變化 8
四、影響茶葉品質的內容物成分 10
(一)、多元酚類 11
(二)、生物鹼 12
(三)、揮發性化合物 12
(四)、胺基酸 13
第三章、材料與方法 15
第四章、結果與討論 19
結論 30
參考文獻 62
附錄一、各時間點施肥組合及施用氮素劑量 72
附錄二、2018年6月5日至2018年6月12日累積雨量 72
參考文獻
王為一、廖慶樑、陳玄. 2001. 茶樹芽體分化與發育之觀察研究. 中國園藝 47(3):291-300
呂毅、郭雯飛、倪捷兒、楊賢强.2003. 茶氨酸的生理作用及合成. 茶葉科學 23(1):1-5
朱惠民. 1977. 不同來源之氮肥對茶產量及品質之影響. 台灣茶業改良場1976年報. 桃園楊梅茶業改良場編印. p. 50–51.
邱垂豐、蔡新民. 1987. 葉面施肥對茶樹生長之影響. 台灣茶業改良場1976年報. 桃園楊梅茶業改良場編印. p. 15–18.
吳信淦. 1954. 茶樹自交不親合性的初步研究. 茶葉研究論文集, 農林公司平鎮試驗所 pp. 97-100.
吳振鐸. 1963. 茶樹花部型態的研究. 中華農學會報 44: 24-52.
吳振鐸、葉速卿. 1977. 茶芽各部位之胺基酸含量與其製茶品質之影響. 台灣茶業改良場1976年報. 桃園楊梅茶業改良場編印. p. 78-80.
李淑美、陳右人. 2003. 溫度對茶樹茶菁產量與品質之影響. 台灣茶業研究彙報 22: 43-55.
李台強、楊美珠、陳右人. 2004. 茶樹隔離天然雜交採種初報. 台灣茶業研究彙報 23: 15-20.
李心潔、陳冠亨、曾志正. 2014. 烏龍茶種植海拔高度與其茶湯澀度的關聯性. 嘉大農林學報 63(2): 107-113
張鳳屏、林木連. 1991. 茶葉化學成分對包種茶品質之影響. 台灣茶業改良場1990年報. 桃園楊梅茶業改良場編印. p. 33-34.
唐明德、陳國本、陳興琰. 1986. 茶樹留養葉的光合特性. 茶葉科學 6 (2): 25-30.
陳右人、蔡俊明、施金柯. 1991. 茶樹淺剪枝時期對茶菁產量之影響. 茶改場80年年報 pp. 13-15.
陳玄、林木連、陳右人、曾信光、馮鑑淮、蔡右任、王兩全、郭寬福. 1991. 氣象因子對青心烏龍種茶之生長周期與茶菁品質之影響調查. 80農建-9. 1-林25( 20) 甲報告
陳興琰、周冀衡. 1982. 茶樹同化產物的探討-枝梢生長與同化產物代謝運輸的關係. 茶業通訊 4: 6-11
陶漢之、嚴子范. 1992. 茶樹葉片蒸騰速率、氣孔導度和水分利用率的研究. 安徽農學院學報. 19 (1): 33-38.
馮鑑淮、徐英祥. 1983. 遮陰度及覆蓋時間對茶芽特性、化學成分與煎茶品質的相關研究.台灣茶業研究彙報 2: 72-83
湯丹丹、劉美雅、范凱、阮建云. 2017. 茶樹氮素吸收利用機制研究進展. 園藝學報 44(9): 1759-1771.
馮鑑淮、陳右人. 1990. 茶樹開花結果之農藝性狀調查及對生產之影響. 台灣茶業研究彙報 9: 21-33.
馮鑑淮. 1966. 荷爾蒙處理茶樹自交花促進結實之研究. 科學農業 14: 1-2.
馮鑑淮、蔡俊明、施金柯、陳右人. 1993. 海拔高度與茶樹採摘週期、芽葉農藝性狀及包種茶品質的影響研究. 台灣茶業研究彙報 12: 47-65.
馮鑑淮、陳國任、陳右人. 1994. 東部茶樹剪枝時期、保溫與灌溉對春茶萌芽生長之影響. 台灣茶業研究彙報 13: 9-26.
楊美珠、陳右人. 2000. 茶樹自交不親合現象之觀察. 中國園藝 46:83-92.
楊美珠、陳右人. 2003. 水溶性擴散物對茶樹自交不親合性之影響. 台灣茶業研究彙報. 22:33-41.
蔡俊明. 1985茶樹淺剪枝時期對萌芽期及收量之影響研究. 台灣茶業研究彙報. 4: 114-120.
蔡永生、區少梅、張如華. 1990. 不同品種包種茶官能品評與化學組成之特徵與判別分析. 台灣茶業研究彙報 9: 79-97.
蔡俊明、李淑美、陳右人、張清寬. 2004. 葉面施用尿素對茶樹氮肥施用量與茶葉品質之影響. 台灣茶業研究彙報23:45-56
蘇煜倫、林金池、侯金日. 2010. 焙火處理對不同海拔茶葉化學成份及品質之影響. 嘉大農林學報 7(2): 17-32.
蘇有健、廖萬有、丁勇、王宏樹、夏先江. 2011不同氮營養水平對茶葉產量與品質的影響. 植物營養與肥料學報 17(6):1430-1436
蘇彥碩、劉千如、曹碧貴、胡智益、鄭混元、黃玉如、邱垂豐. 2013. 茶園合理化施肥技術. 臺中區農業改良場特刊 118: 187-198.
Aber, J.D., K.J. Nadelhoffer, P. Steudler, and J.M. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. Bioscience 39:378-386.
Ali, A.G. and C.J. Lovatt. 1992. Winter application of foliar urea. Citrograph 78(2): 7-9.
Alcazar, R., T. Altabella, F. Marco, C. Bortolotti, M. Reymond, C. Koncz, P. Carrasco, and A.F. Tiburcio. 2010. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 231(6): 1237-1249.
Azeem, B., K. KuShaari, Z.B. Man, A. Basit, and T.H. Thanh. 2014. Review on meterials and methods to produce controlled release coated urea fertilizer. Journal of Controlled Release 181: 11-21.
Brown, P.H., R.M. Welch and E.E. Cary. 1987. Nickel: A micronutrient essential for higher plants. Plant Physiol. 85:801-803.
Bowman, D.C. and J.L. Paul. 1989. The foliar absorption of urea-N by Kentucky bluegrass turf. J. Plant Nutr. 12: 659–673.
Bondada, B.R., J.P. Syvertsen and L.G. Albrigo. 2001. Urea nitrogen uptake by citrus leaves. HortScience 36: 1061-1065.
Bi, G. and C.F. Scagel. 2008. Nitrogen uptake and mobilization by Hydrangea leaves from foliar-sprayed urea in fall depend on plant nitrogen status. HortScience 43: 2151-2154
Bowman, W.D., C.C. Cleveland, L. Halada, J. Hresko, and J.S. Barson. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geosci. 1:767-770.
Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore,M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, B. Emmett, J.W. Erisman, M. Fenn, F. Gilliam, A. Nordin, L. Pardo, and W. De Vries. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20:30-59
Baldermann, S., Z.Y. Yang, T. Katsuno, A. Tu Vo, N. Mase, Y. Nakamura and N. Watanabe. 2014. Discrimination of green, oolong, and black teas by GC-MS analysis of characteristic volatile flavor compounds. American Journal of Analytical Chemistry 5(9): 620–632.
Cheng, L., S. Dong, and T. Bates. 2002. Urea uptake and nitrogen mobilization by apple leaves in relation to tree nitrogen status in autumn. J. Hort. Sci. Biotech. 77: 13-18.
Cho, Y.M., M. Mizutani, B. Shimizu, T. Kinoshita, M. Ogura, K. Tokoro, and K. Sakata. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty”. Bioscience Biotechnology and Biochemistry 71(6): 1476-1486.
Chen, Q., J. Zhao, Z. Guo, and X. Wang. 2010. Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration. J. Food Compos. Anal. 23(4): 353-358.
Chaturvedula, V.S.P. and I. Prakash. 2011. The aroma, taste, color and bioactive constituents of tea. J. Med. Plants Res. 5(11): 2110-2124.
Dong, S., L. Cheng, C.F. Scagel, and L.H. Fuchigami. 2002. Nitrogen absorption, translocation and distribution from urea applied in autumn to leaves of young potted apple (Malus Domestica) trees. Tree Physiol. 22:1305-1310.
Deng, W. W., S. Ogita, and H. Ashihara. 2008. Biosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensis. Phytochemistry Letters. 1(2): 115-119.
Fu, X.M., Y.Y. Chen, X. Mei, T. Katsuno, E. Kobayashi, F. Dong, and Z.Y. Yang. 2015. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports. 5 article number: 16858.
Gundersen, P. and L. Rasmussen. 1990. Nitrification in forest coils-effects from nitrogen deposition on soil acidification and aluminum release. Rev. Environ. Contam Toxicol. 113:1-45
Gooding, M.J. and W.P. Davies. 1992. Foliar urea fertilization of cereals: A review. Fertilizer Research 32: 209-222
Guo, J.H., X.J. Liu, Y. Zhang, J.L. Shen, W.F. Zhang, P. Christie, K.W. Goulding, P.M. Vitousek and F.S. Zhang. 2010. Significant acidification in major Chinese croplands. Science 327:1008-1010.
Gui, J.D., X.M. Fu, Y. Zhou, T. Katsuno, X. Mei, R.F. Deng, and Z.Y. Yang. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural and Food Chemistry 63(31): 6905-6914.
Hampton, M. G. In K. C., and M. N. Clifford. 1999. Tea cultivation to consumption. London: Chapman and Hall. 459-510.
Huo, D.Q., Y. Wu, M. Yang, H.B. Fa, X.G. Luo, and C.J. Hou. 2014. Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays. Food Chem. 145:639-645.
Krogmeier, M.J., W.G. McCarty, and J.M. Bremner. 1989. Phytotoxicity of foliar-applied urea. USA: P roc. Natl. Acad. Sci. 86: 8189-8191.
Kumazawa, K. and H. Masuda. 1999. Identification of potent odorants in Japanese green tea (sen-cha). Journal of Agricultural and Food Chemistry 47(12): 5169-5172.
Kumazawa, K. and H. Masuda. 2002. Identification of potent odorants in different green tea varieties using flavor dilution technique. Journal of Agricultural and Food Chemistry 50(20): 5660-5663.
Kaneko, S., K. Kumazawa, H. Masuda, A. Henze, and T. Hofmann. 2006. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 54(7): 2688-2694.
Kojima, S., A. Bohner, and N.V. Wiren. 2006. Molecular mechanism of urea transport in plants. J. Membrane Biol. 212: 83-91.
Ku, K.M., J.N. Choi, J. Kim, J.K. Kim, L.G. Yoo, S.J. Lee, Y.S. Hong and C.H.Lee. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellis sinensis L.). J. Agric, Food Chem. 58: 418-426.
Leece, D.R. 1978.Foliar absorption in Prunus domestica L. I. Nature and development of the surface wax barrier. Austral. J. Plant Physiol. 5: 749-766.
Le Gall, G., I.J. Colquhoun, and M. Defernez. 2004. Metabolite profiling using 1H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). Journal of Agricultural and Food Chemistry 52: 692-700.
Lu, X., J. Mo, F.S. Gilliam, G. Zhou, and Y. Fang. 2010. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Glob. Chang. Biol. 16: 2688-2700.
Lee, J.E., B.J. Lee, J.O. Chung, H.N. Kim, E.H. Kim, S. Jung, H. Lee, S.J. Lee and Y.S. Hong. 2015. Metabolomics unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chemistry. 174: 452-459.
Mwakha, E. 1985. Tea shoot growth at different altitudes in Western Kenya. Tea. 6(2): 19-24.
Matson, P.A., W.H. McDowell, A.R. Townsend, and V. PM. 1999. The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry. 46:67-83.
Morita, A. and M. Tuji. 2002. Nitrate and oxalate contents of tea plants (Camellia sinensis L.) with special reference to types of green tea and effect of shading. Soil Sci. Plant Nutr. 48: 547–553.
Maleva, M., G. Borisova, N. Chukina, and N.V. Prasad. 2015. Urea-induced oxidative damage in Elodea densa leaves. Envirn Sci Pollut Res. 22: 13556-13563.
Nakagawa, M. and N. Ishima. 1971. Evaluation of green tea liquor. Study of Tea 41: 41-44.
Narukawa, S., R. Minocha, S. Long, and S.C. Minocha. 2010. Transgenic manipulation of a single polyamine in popular cells affects the accumulation of all amino acid. Amino Acids 38(4): 1117-1129.
Obaga, S.M.O., G.R. Squire and J.K. Langat. 1988. Altitude, temperature and the growth rate of tea shoots. Tea 9(1): 28-33.
Owuor, P.O., C.O. Othieno, J.M. Robinson and D.M. Baker, 1991. Response of tea quality parameters to time of year and nitrogen fertilizer. J. Sci. Food Agric. 55: 1–12.
Owuor, P.O. and H.O. Odhiambo, 1994. Response of some black tea quality parameters to nitrogen-fertilizer rates and plucking frequencies. J. Sci. Food Agric. 66: 555–561.
Okano, K., K. Chutani, and K. Matsuo. 1997. Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids. Jpn. J. Crop Sci. 66: 279–287.
Oh, K., T. Kato, and H. L. Xu. 2008. Transport of nitrogen assimilation in xylem vessels of green tea plants fed with NH4-N and NO3-N. Pedosphere 18(2): 222-226.
Pongsuwan, W., E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara,, and A. Kobayashi. 2007. Predictionof Japanese green tea ranking by gas chromatography/ mass spectrometry-based hydrophilic metabolite fingerprinting. Journal of Agricultural and Food Chemistry 55: 231-236.
Polacco, J.C., P. Mazzafera, and T. Tezotto. 2013. Opinion- nickel and urease in plants: Still many knowledge gaps. Plant Sci. 199-200: 79-90.
Qin, J.H., N. Li, P.F. Tu, Z.Z. Ma, and L. Zhang. 2012. Change in tea polyphenol and purine alkaloid composition during solid solid-state fungal fermentation of postfermented tea. J. Agric. Food Chemistry 60(5): 1213-1217.
Ravichandran, R. and R. Parthiban. 1998. The impact of mechanization of tea harvesting on the quality of the south Indian CTC teas. Food Chemistry 63: 61-64
Ravichandran, R. and R. Parthiban. 1998. The impact of processing techniques on tea volatiles. Food Chemistry 62: 347-353.
Roem, W.J., H. Klees, and F. Berendse. 2002. Effects of nutrient addition and acidification on plant species diversity and seed germination in heathland. J. Appl. Ecol. 39: 937-948.
Ruan, J., L. Ma, and Y. Yang. 2012. Magnesium nutrition on accumulation and transport of amino acids in tea plants. J. Sci. Food Agric. 92(7): 1375-1383.
Ruan, J. and J. Gerendás. 2015. Absorption of foliar-applied urea-15N and the impact of low nitrogen, potassium, magnesium and sulfur nutritional status in tea (Camellia sinensis L.) plants. Soil Sci. Plant Nutr. 61(4): 653-663.
Swietlik, D. and M. Faust. 1984. Foliar nutrition of fruit crops. Horticulture Reviews. 6: 287-355.
Shaviv, A. and R.I. Mikkelsen. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation- A review. Fertilizer Research` 35: 1-12.
Schuh, C. and P. Schieberle. 2006. Characterization of the key aroma compounds in the beverage prepares from Darjeeling black tea: quantitative differences between tea leaves and infusion. Journal of Agricultural and Food Chemistry. 54: 916-924.
Szabados, L. and A. Savoure. 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 15(2): 89-97.
Tanton, T. W. 1982. Environmental factors affecting the yield of tea (Camellia sinensis). L. Effects of air temperature. Experimental Agriculture. 18(1): 47-52.
Tarachiwin, L., K. Ute, A. Kobayashi and E. Fukusaki. 2007. H-1 NMR based metabolic profiling in the evaluation of Japanese green tea quality. Journal of Agricultural and Food Chemistry. 55:9330-9336.
USEPA. 2008. Registering pesticides. Washington, D.C. 11-26
Van Lelyveld, L.J., B.L. Smith and C. Fraze, 1990. Nitrogen fertilization of tea: effect on chlorophyll and quality parameters of processed black tea. Acta Hortic. 275: 483–488.
Venkatesan, S. and M.N.K. Ganapathy, 2004. Impact of nitrogen and potassium fertilizer application on quality of CTC teas. Food Chem. 84: 325–328.
Vuong, Q. V., M. C. Bowyer , and P. D. Roach. 2011. L‐Theanine: properties, synthesis and isolation from tea. J. Sci. Food Agric. 91(11): 1931-1939.
Watanabe, I. 1995. Effect of nitrogen-fertilizer application at different stages on the quality of green tea. Soil Sci. Plant Nutr. 41: 763–768.
Wang, D.M., K. Kubota, A. Kobayashi and I.M. Juan. 2001. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Changes inglycoside contents during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry. 49: 5391-5396.
Wang, W.H., B. Kohler, F.Q. Cao and L.H. Liu. 2008. Molecular and physiological aspects of urea transport in higher plants. Plant Sci. 175: 467-477.
Witte, C.P., S.A. Tiller, M.A. Taylor and H.V. Davies. 2002. Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of N15 after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiol. 128: 1129-1136.
Witte, C.P. 2011. Urea metabolism in plants. Plant Sci. 180:431-438.
Wang, L.F., J.Y. Lee, J.O. Chung, J.H. Baik, S. So and S.K. Park. 2008. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavor compounds. Food Chemistry. 109(1): 196-206.
Wang, W.H., B. Kohler, F.Q. Cao and L.H. Liu. 2008. Molecular and physiological aspects of urea transport in higher plants. Plant Sci. 175: 467-477.
Witte, C.P. 2011. Urea metabolism in plants. Plant Sci. 180:431-438.
Wang, L.Y., K. Wei, H. Cheng, W. He, X.H. Li and W.Y. Gong. 2014. Geographical tracing of Xihu Longjing tea using high performance liquid chromatography. Food Chem. 146: 98-103.
Wang, X., C. Han, J. Zhang, Q. Huang, H. Deng, Y. Deng, and W. Zhong. 2015. Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biol. Biochem. 84:28-37.
Xia, G.H. and L.L. Cheng. 2004. Foliar urea application in the fall affects both nitrogen and carbon storage in young ‘Concord’ grapevines grown under a wide range of nitrogen supply. J. Am. Soc. Hort. Sci. 129: 653-659.
Yang, Z.Y., E. Kobayashi, T. Katsuna, T. Asanuma, T. Fujimori, T. Ishikawa and N. Watanabe. 2012. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry. 135(4): 2268-2276.
Yang, D., X. Liu, H.G. Liu, Y.B. Zhang and P. Yin. 2013. Effect of the near infrared spectrum resolution on the nitrogen content model in green tea. Spectrosc. Spect. Anal. 33: 1786–1790.
Zhou, J., J. Cheng, W. He, L.Y. Wang, X. Liu and X.Y. Lu. 2009. Short communication: identification of geographical indication tea with Fisher’s discriminant classification and principal components analysis. J. Near Infarred Spectrosc. 17: 159-164.
Zeng, L., Y. Zhou, X. Fu, X. Mei, S. Cheng, J. Gui, F. Dong, J. Tang, S. Ma and Z. Yang. 2017. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry. 237: 488-498.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top