跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭宇軒
研究生(外文):Peng, Yu-Syuan
論文名稱:適應性電容式電池平衡管理演算法研究
論文名稱(外文):Adaptive Battery Equalization Algorithm for Capacitor-based Battery Management System
指導教授:董蘭榮董蘭榮引用關係
指導教授(外文):Dung, Lan-Rong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:電池平衡電容式平衡電池管理系統磷酸鋰鐵電池
外文關鍵詞:equalizationcapacitor balanceLiFePO4 batterybattery management system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來為了降低對於地球環境的傷害與減少交通運輸對於石油的依賴性,許多產業開始積極投入電動車與油電混合車產業,並使用鋰離子電池模組作為其主要動力來源,而電池所佔的成本居高不下,因此如何提高電池的利用價值便成為電池管理的熱門話題。然而為了因應使用需求,通常會將電池芯互相串並聯構成龐大的電池組,長期使用下便會發生各電池芯老化程度不一的情形,老化電池將影響整串電池組的使用,若是不妥善管理電池將會使電池組老化情形更為惡化,因而發展出了電池平衡管理技術。過去對於電池平衡管理只講求平衡電池端電壓或是電池電量狀態的差異,並沒有從實際電池使用的角度去觀看電池平衡這項事情。本論文所提出的適應性電容式電池平衡管理演算法以電池組放電使用的結果去解釋平衡的意義,並針對磷酸鋰鐵電池隨老化程度不同而表現出的充放電特性差異,有別於以往在電池靜置時長期操作平衡電路,本論文使用充電平衡方式將可大量節省平衡電池所需花費的時間,並提出一套能隨電池老化狀況適應性調整的電容式平衡啟動演算法,使電池組經過平衡後能後達到正確且有效的平衡目的,讓電池組保持在最佳的電池續航力狀態,並能降低電池的平均使用放電深度以增加電池組使用循環次數,同時避免電池組的老化效應持續增長。利用此演算法所實驗的結果有效增加7.3%電池所充入電量,並使電池增加1.5%放出電量。
In recent years, as energy-saving and environmental protection were widely concerned around the world, the LiFePO¬4¬¬¬ battery has been widely used in hybrid electric vehicle (HEV) and electric vehicle (EV). Because of the high cost of the Li-ion battery, how to extend the value of the battery is becoming a hot issue. Generally the battery pack for HEV is composition of the number of cells in series. In this case, unbalancing among cells due to the degradation, temperature etc, will be accelerated by the cycles of charge and discharge without an appropriate battery equalization management system. However, the balancing system only intended to reduce the difference of cell voltage or Stage of Charge (SoC) before. “Adaptive Battery Equalization Algorithm for Capacitor-based Battery Management System” this thesis proposed re-explains the meaning of battery equalization. Instead of long-term using battery equalizer on standby, this thesis equalizes the battery when charging to save much spending time. It could not only adjust the balancing mechanism automatically in order to keep the available charge but also raise the average SoC to prevent the effect of battery aging and improve the cycle number of battery. Experiment results indicate that the available charge increases 1.5% and the battery capacity efficiently improves 7.3%.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
符號目錄 XI
第一章 緒論 1
1.1研究動機與目的 1
1.2研究背景與發展現況 2
1.3研究貢獻 2
1.3論文架構 3
第二章 鋰離子電池基本介紹與平衡電路背景介紹 4
2.1專有名詞解釋 4
2.2鋰離子電池特性介紹 7
2.2.1鋰離子電池簡介 7
2.2.2電化學反應 8
2.3平衡電路之發展 10
2.3.1電池老化現象 10
2.3.2使用平衡電路的原因 12
2.3.3電池平衡的目的 14
2.4平衡電路背景介紹 17
2.4.1平衡電路簡介 17
2.4.2電容式平衡電路 18
2.5電容式平衡電路之使用方式 19
第三章 磷酸鋰鐵電池模型之建立 23
3.1鋰離子電池等效電路模型 23
3.1.1理想模型 23
3.1.2線性模型 24
3.1.3 Thevenin等效模型 25
3.1.4等效電容模型. 25
3.2磷酸鋰鐵電池之電路模型建立 26
3.2.1電池之基本資料 26
3.2.2電池等效電路之建立 27
3.3 以Matlab模擬電池等效電路 30
第四章 適應性平衡演算法之研究 32
4.1電容式平衡模型 32
4.2適應性調整影響平衡電流之Req 36
4.3開啟平衡電路時機選擇之概念 37
4.4啟動平衡電路之時機選擇 41
4.5適應性調整平衡電路啟動之機制 43
4.6模擬分析 47
4.6.1未開啟平衡電路 49
4.6.2充電全程開啟平衡電路 49
4.6.3使用平衡啟動機制 50
4.6.4模擬結果分析比較 51
第五章 硬體實現與實驗結果 55
5.1電池平衡管理系統架構設計 55
5.1.1監測電路 56
5.1.2控制電路 57
5.1.3平衡電路 58
5.1.4充放電保護電路 61
5.1.5 LabView 電腦端控制介面 62
5.2系統運作流程與介紹 63
5.3實驗平台及實驗結果分析 64
5.3.1電池平衡管理系統硬體實現 64
5.3.2實驗流程與參數設定 65
5.3.3實驗結果 66
第六章 結論與未來展望 69
6.1結論 69
6.2未來展望 70
參考文獻 72

[1] Battery University, “Types of Lithium-Ion,” July 2010.
http://batteryuniversity.com/learn/article/types_of_lithium_ion
[2] W. Fang, O.J. Kwon, and C.Y. Wang, “Electrochemical-Thermal Modeling of Automotive Li-Ion Batteries and Experimental Validation Using a Three-Electrode Cell,” International Journal of Energy Research, vol. 34, pp. 107-115, February 2010.
[3] D. Linden, Handbook of Batteries, Second Edition, McGraw-Hill, New York, 1995.
[4] S. Barsali and M. Ceraolo, “Dynamical models of lead-acid batteries: Implementation issues,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 16–23,
March 2002.
[5] Bo Li, Daiming Yang, Jianzheng Liu, Man Chen, and Zhigang Lu, “An Optimal Strategy of Balancing for LiFePO4 Battery in Battery Energy Storage System,” Energy Research and Power Engineering, vol. 341 - 342, July, 2013.
[6] S.S Choi and H.S Lim, “Factors that Affect Cycle-life and Possible Degradation Mechanisms of a Li-Ion Cell Based on LiCoO2,” Journal of Power Sources, vol. 111, no. 1, pp.130-136, 2002.
[7] K. Amine, J. Liu, and I. Belharouak, “High-temperature Storage and Cycling of C-LiFePO4/graphite Li-Ion Cells,” Electrochemistry Communications, vol. 7, n, pp.669-673, 2005.
[8] M. Einhorn, W. Roessler, and J. Fleig, “Improved Performance of Serially Connected Li-Ion Batteries With Active Cell Balancing in Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 60, pp. 2448-2457, 2011.
[9] C.T. Lin, “Study on anti-race PWM-based battery pack equalization,” July 2012.
[10] M. Einhorn, W. Guertlschmid, T. Blochberger, R. Kumpusch, R. Permann, F. V. Conte, C. Kral, and J. Fleig “A current equalization method for serially connected battery cells using a single power converter for each cell,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp.4227 -4237, 2011.
[11] C. Kishiyama, M. Nagata, T. Piao, J. Dodd, P. Lam, and H. Tsukamoto, “Improvement of Deep Discharge Capability for Lithium Ion Batteries,” Proceedings of the Electrochemical Society, vol. 28, pp. 252-259, 2004.
[12] J. Wanga, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore, “Cycle-Life Model for Graphite-LiFePO4 Cell,” Journal of Power Sources, vol.196, no. 8, pp. 3942-3948, 2011.
[13] S. W. Moore and P. J. Schneider, “A review of cell equalization methods for lithium ion and lithium polymer battery systems,” SAE Technical Paper Series, pp.1 - 5, 2001.
[14] M. Daowd, N. Omar, P. Van Den Bossche and J. Van Mierlo, “Passive and active battery balancing comparison based on MATLAB simulation,” IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-7, 6-9, September 2011.
[15] Jian Cao, Nigel Schofield, and Ali Emadi, “Battery Balancing Methods: A Comprehensive Review,” IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, 2008.
[16] K. Z. Guo, Z. C. Bo, L. R. Gui, and C. S. Kang, “Comparison and Evaluation of Charge Equalization Technique for Series Connected Batteries,” IEEE Power Electronic Specialist Conference, pp. 1-6, June 2006.
[17] Y. Xiaolu, E. Ma, and M. Pecht, “Cell balancing technology in battery packs,” Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012 13th International Conference, pp.1038 - 1041, 2012.
[18] R. Fukui and H. Koizumi, “Double-tiered switched capacitor battery charge equalizer with chain structure,” Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, pp. 6715 - 6720, 2013.
[19] A. C. Baughman and M. Ferdowsi, “Analysis of the Double-Tiered Three-Battery Switched Capacitor Battery Balancing System,” IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, September 2006.
[20] H. L. Chan, “A new battery model for use with battery energy storage systems and electric vehicles power systems,” IEEE Power Engineering Society, vol. 1, pp. 470-475, 2000.
[21] X. Wei, B. Zhu, and W. Xu, “Internal Resistance Identification in Vehicle Power Lithium-Ion Battery and Application in Lifetime Evaluation,” International Conference on Measuring Technology and Mechatronics Automation, vol. 3, pp.388-392, 2009.
[22] J. Feng, X. Manling, and C. Jinhui, “Power battery impedance spectrum test technology based on current pulse excitation and frequency spectrum analysis,” 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, August 2011.
[23] Suleiman Abu-Sharkh and Dennis Doerffel, “Rapid test and non-linear model characterization of solid-state lithium-ion batteries,” Journal of Power Sources, vol. 130, pp. 266–274, May 2004.
[24] J.W. Kimball and P. T. Krein, “Analysis and design of switched capacitor converters,” Applied Power Electronics Conference and Exposition, vol. 3, pp. 1473-1477, March 2005.
[25] H. S. Park, C. H. Kim, and G. W. Moon, “Charge equalizer design method based on battery modularization,” IEEE International Conference Sustainable Energy Technologies, pp. 558-563, November 2008.
[26] W. F. Bentley, “Cell balancing considerations for lithium-ion battery systems,” Battery Conference on Applications and Advances, Twelfth Annual, Vol. 1, pp. 223-226 ,January 1997.
[27] Texas Instruments, 3 to 6 Series Cell Lithium-Ion Battery Monitor and Secondary Protection IC for EV and HEV Applications, 2011.
http://www.ti.com/lit/ds/symlink/bq76pl536a.pdf
[28] Texas Instruments, LMP8480 / LMP8481 Precision 76V High-Side Current Sense Amplifiers with Voltage Output, 2012.
http://www.ti.com/lit/ds/symlink/lmp8481.pdf
[29] Microchip, PIC18F2480/2580/4480/4580 Data Sheet, 2009.
http://ww1.microchip.com/downloads/en/DeviceDoc/39637d.pdf
[30] Microchip, PIC18F67K90 Family Data Sheet, 2010.
http://ww1.microchip.com/downloads/en/DeviceDoc/39957b.pdf

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top