跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉冠呈
研究生(外文):Kuan-Cheng Liu
論文名稱:週期壓電制動微擾流對浮游生物運動行為的影響
論文名稱(外文):On the role of piezoelectric-actuated microflow disturbance in the locomotion of planktonic cells in microfluidics
指導教授:孫珍理
口試委員:楊馥菱王翔郁
口試日期:2017-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:微流元件壓電制動擾流浮游生物運動卡羅藻逃離行為
DOI:10.6342/NTU201804280
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討浮游生物K. veneficum (CCMP426) 在不同微觀擾流流場環境下的運動行為。我們建構一壓電制動的微擾流元件,利用uPIV量測流場隨時間的變化,並將浮游生物置入此微流元件,以觀察擾流對其運動行為的影響。實驗所使用的微流道為 T型微流道,壓電震盪源來自於T型微流道左方及下方兩流道,流體由兩入口以90°相交進入,在交會處會因壓電震盪所造成的流體壓縮與拉引而產生強烈剪流。在不同驅動條件下,我們量化了浮游生物個體之運動速度、軌跡特徵及其行進方向與流場剪應變率梯度向量之夾角,並定義浮游生物的「轉向」行為,以探討浮游生物對擾流的反應。其中浮游生物運動方向與剪應變率梯度向量之夾角可用來表示其對環境流場變化的趨性,此角度越接近180°則表示浮游生物有逃離高剪應變率區域的現象。
我們依照不同量級的驅動頻率分別設定適當的驅動電壓,頻率量級越高,驅動電壓越高。與靜止流場下比較,流場擾動會刺激浮游生物的運動速度增加22%至43%,但在1 Hz、10 Hz、100 Hz這三個頻率量級都發現浮游生物運動速度會隨著擾動頻率增加而下降,且擾動主要影響浮游生物直行運動的速度。在週期震盪流場中,浮游生物能利用與自身運動速度差不多的環境流速來增加自身運動速度。在剪應變率大於0.3 s-1的環境下,浮游生物族群運動方向與剪應變率梯度向量之夾角接近180°的機率上升,代表浮游生物開始產生逃離高剪應變率區域的反應;在剪應變率大於1.5 s-1之後,浮游生物運動方向與剪應變率梯度向量之夾角往90°集中,代表浮游生物抵抗剪應變率變化的能力下降。本研究所得之結果可以協助我們釐清環境剪應變率對浮游生物運動行為之影響,以利未來更進一步探討浮游生物之運動行為所造成的斑狀分布。
This study focuses on the locomotion of plankton K. veneficum (CCMP426) in a microfluidic environment disturbed by piezoelectric actuation. A T-shaped microchannel is integrated with piezoelectric diaphragms that generate flow disturbance in the two microchannels intersecting at 90°. Hence, strong shear flow is produced in the confluence region. Under different actuation conditions, the variations of the flow field with time are diagnosed by PIV measurement, and the trajectory and swimming velocity of individual plankton cell are analyzed. We also define an angle between the swimming direction and the gradient of the shear rate to identify the escape behavior of K. veneficum.
For the piezoelectric actuation, the imposed voltage is set in accord with the order of magnitude of the actuation frequency, which spans from 1 Hz to 100 Hz. Comparing to the stationary habitat, flow disturbance tends to stimulate planktonic movement by increasing their swimming velocity 22% to 43%. However, heightening the actuation frequency within the same order is found to slow down the planktonic movement. When shear rate exceeds 0.3 s-1, plankton cells have a higher probability to swim in a direction of decreasing the shear rate, suggesting that plankton cells tend to escape from high shear-rate region. Nevertheless, the PDF (probability density function) peak of the angle between the swimming direction and the gradient of shear rate shifts toward 90° when shear rate becomes larger than 1.5 s-1, indicating that plankton cells are not able to resist shear rate changes at large shear rate. The outcome of this study helps us to clarify the effects of flow disturbance on the locomotion of planktonic cells and lay the groundwork for studying plankton patchiness from a Lagrangian perspective in the future.
目錄
摘要 I
Abstract III
目錄 V
符號索引 IX
圖目錄 X
表目錄 XV
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 K. veneficum 2
1.2.2 趨旋性與浮游生物對紊流、渦旋及剪應變率的反應 3
1.2.3 壓電震盪器在微流體元件中之運用 6
1.3 研究動機 6
第二章 元件設計、製程與實驗程序 7
2.1 壓電制動微擾流元件設計 7
2.1.1 T型微流道 7
2.1.2 微擾流產生元件 7
2.2 微流道製程 8
2.2.1 矽晶圓清洗 8
2.2.2 母模製作 9
2.2.3 PDMS製程 10
2.3 微擾流產生元件製程與組合 11
2.3.1 壓克力腔室製程 11
2.3.2 元件黏合 13
2.4 實驗架構 13
2.4.1 流體趨動裝置 13
2.4.2 mPIV量測系統 14
2.5 實驗程序與速度場校正 17
2.5.1 元件注水作業 17
2.5.2 uPIV速度場校正 18
2.5.3 浮游生物培養與調製程序 19
2.5.4 浮游生物追蹤程序 20
2.5.5 浮游生物運動行為之分析程序 21
2.6 不確定性分析 22
2.6.1 流場速度量測 23
2.6.2 流場剪應變率 23
2.6.3 流場剪應變率梯度 24
2.6.4 浮游生物位移 24
2.6.5 浮游生物運動速度 25
2.6.6 浮游生物運動方向與剪應變率梯度向量之夾角 25
2.7 前置研究 26
2.7.1 浮游生物之運動特徵 26
2.7.2 實驗參數設定流程 27
2.7.3 實驗參數設定結果 28
2.7.4 浮游生物個體之運動行為指標 28
第三章 實驗結果 30
3.1 PIV量測結果 30
3.1.1 10 Vpp、100 Hz之流場 30
3.1.2 10 Vpp、200 Hz之流場 32
3.1.3 10 Vpp、300 Hz之流場 32
3.1.4 10 Vpp、400 Hz之流場 33
3.1.5 0.01 Vpp、1 ~ 4 Hz之流場特徵 34
3.1.6 0.1 Vpp、10 ~ 40 Hz之流場特徵 35
3.1.7 10 Vpp、100 ~ 400 Hz之流場特徵 35
3.1.8 不同驅動頻率下改變驅動電壓之流場特徵變化 36
3.2 浮游生物運動分析 37
3.2.1 靜態流場下之浮游生物運動行為 38
3.2.2 0.01 Vpp、1 ~ 4 Hz之浮游生物運動行為 38
3.2.3 驅動條件為0.1 Vpp、10 ~ 40 Hz之浮游生物運動行為 39
3.2.4 10 Vpp、100 ~ 400 Hz之浮游生物運動行為 40
3.2.5 不同驅動頻率下改變驅動電壓時浮游生物之運動特徵 42
3.2.6 浮游生物之轉向次數 42
3.3 擾流對浮游生物之影響 43
3.3.1 各驅動條件下流場資料點的分布 43
3.3.2 流場震盪對浮游生物運動分析的影響 44
3.3.3 流場平均流速對浮游生物運動速度的影響 44
3.3.4 微擾流對浮游生物運動速度之影響 45
3.3.5 微擾流對浮游生物運動方向之影響 46
3.3.6 微擾流對死亡之浮游生物運動行為的影響 47
第四章 結論與建議 49
4.1 結論 49
4.2 建議 50
參考文獻 52
[1]D. M. Karl, E. A. Laws, P. Morris, and S. Emerson, "Global carbon cycle (communication arising): metabolic balance of the open sea," Nature, vol. 426, no. 6962, p. 32, 2003 (10.1038/426032a).
[2]C. L. Folt and C. W. Burns, "Biological drivers of zooplankton patchiness," Trends in Ecology & Evolution, vol. 14, no. 8, pp. 300-305, 1999 (10.1016/S0169-5347(99)01616-X).
[3]S. Ghosal, M. Rogers, and A. Wray, "The turbulent life of phytoplankton," in Center for Turbulence Research Proceeding of the Summer Program, 2000, pp. 31-45,
[4]R. Rusconi, M. Garren, and R. Stocker, "Microfluidics expanding the frontiers of microbial ecology," Annual Review of Biophysics, vol. 43, pp. 65-91, 2014 (10.1146/annurev-biophys-051013-022916).
[5]R. Stocker, "Microorganisms in vortices: a microfluidic setup," Limnology and Oceanography: Methods, vol. 4, no. 10, pp. 392-398, 2006 (10.4319/lom.2006.4.392).
[6]U. Timm and A. Okubo, "Gyrotaxis: interaction between algae and flagellates," Bulletin of Mathematical Biology, vol. 57, no. 5, pp. 631-650, 1995 (10.1016/S0092-8240(05)80766-9).
[7]D. M. Fields and J. Yen, "The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance," Journal of Plankton Research, vol. 19, no. 9, pp. 1289-1304, 1997 (10.1093/plankt/19.9.1289).
[8]W. M. Durham, J. O. Kessler, and R. Stocker, "Disruption of vertical motility by shear triggers formation of thin phytoplankton layers," Science, vol. 323, no. 5917, pp. 1067-1070, 2009 (10.1126/science.1167334).
[9]M. T. Barry, R. Rusconi, J. S. Guasto, and R. Stocker, "Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton," Journal of The Royal Society Interface, vol. 12, no. 112, pp. 1-13, 2015 (10.1098/rsif.2015.0791).
[10]A. R. Place, H. A. Bowers, T. R. Bachvaroff, J. E. Adolf, J. R. Deeds, and J. Sheng, "Karlodinium veneficum-The little dinoflagellate with a big bite," Harmful Algae, vol. 14, pp. 179-195, 2012 (10.1016/j.hal.2011.10.021).
[11]T. Bergholtz, N. Daugbjerg, ?. Moestrup, and M. Fern?ndez?Tejedor, "On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition.," Journal of Phycology, vol. 42, no. 1, pp. 170-193, 2006 (10.1111/j.1529-8817.2006.00172.x).
[12]J. E. Adolf, D. K. Stoecker, and L. W. Harding, "Autotrophic growth and photoacclimation in Karlodinium micrum (Dinophyceae) and Storeatula major (Cryptophyceae)," Journal of Phycology, vol. 39, no. 6, pp. 1101-1108, 2003 (10.1111/j.0022-3646.2003.02-086.x).
[13]A. Li, D. K. Stoecker, and J. E. Adolf, "Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum," Aquatic Microbial Ecology, vol. 19, no. 2, pp. 163-176, 1999 (10.3354/ame019163).
[14]A. Li, D. K. Stoecker, and D. W. Coats, "Use of the ''food vacuole content''method to estimate grazing by the mixotrophic dinoflagellate Gyrodinium galatheanum on cryptophytes," Journal of Plankton Research, vol. 23, no. 3, pp. 303-318, 2001 (10.1093/plankt/23.3.303).
[15]J. E. Adolf, D. Krupatkina, T. Bachvaroff, and A. R. Place, "Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum," Harmful Algae, vol. 6, no. 3, pp. 400-412, 2007 (10.1016/j.hal.2006.12.003).
[16]J. E. Adolf, C. L. Yeager, W. D. Miller, M. E. Mallonee, and L. W. Harding Jr, "Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA," Estuarine, Coastal and Shelf Science, vol. 67, no. 1-2, pp. 108-122, 2006 (10.1016/j.ecss.2005.11.030).
[17]D. K. Stoecker, J. E. Adolf, A. R. Place, P. M. Glibert, and D. W. Meritt, "Effects of the dinoflagellates Karlodinium veneficum and Prorocentrum minimum on early life history stages of the eastern oyster (Crassostrea virginica)," Marine Biology, vol. 154, no. 1, pp. 81-90, 2008 (10.1007/s00227-007-0901-z).
[18]J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, "Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates," Proceedings of the National Academy of Sciences, vol. 104, no. 44, pp. 17512-17517, 2007 (10.1073/pnas.0704658104).
[19]J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, "A dinoflagellate exploits toxins to immobilize prey prior to ingestion," Proceedings of the National Academy of Sciences, vol. 107, no. 5, pp. 2082-2087, 2010 (10.1073/pnas.0912254107).
[20]C. Fuentes-Gr?newald, E. Garc?s, S. Rossi, and J. Camp, "Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production," Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 9, pp. 1215-1224, 2009 (10.1007/s10295-009-0602-3).
[21]J. O. Kessler, "Gyrotactic buoyant convection and spontaneous pattern formation in algal cell cultures," in Nonequilibrium cooperative phenomena in physics and related fields: Springer, 1984, pp. 241-248.
[22]M. M. Dekshenieks, P. L. Donaghay, J. M. Sullivan, J. E. Rines, T. R. Osborn, and M. S. Twardowski, "Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes," Marine Ecology Progress Series, vol. 223, pp. 61-71, 2001 (10.3354/meps223061).
[23]P. J. Franks, "Thin layers of phytoplankton: a model of formation by near-inertial wave shear," Deep Sea Research Part I: Oceanographic Research Papers, vol. 42, no. 1, pp. 75-91, 1995 (10.1016/0967-0637(94)00028-Q).
[24]A. M. Roberts and F. M. Deacon, "Gravitaxis in motile micro-organisms: the role of fore-aft body asymmetry," Journal of Fluid Mechanics, vol. 452, pp. 405-423, 2002 (10.1017/S0022112001006772).
[25]J. O. Kessler, "Hydrodynamic focusing of motile algal cells," Nature, vol. 313, no. 5999, p. 218, 1985 (10.1038/313218a0).
[26]M. Lebert and D.-P. H?der, "How Euglena tells up from down," Nature, vol. 379, no. 6566, pp. 590-590, 1996 (10.1038/379590a0).
[27]M. S. Hoecker-Mart?nez and W. D. Smyth, "Trapping of gyrotactic organisms in an unstable shear layer," Continental Shelf Research, vol. 36, pp. 8-18, 2012 (10.1016/j.csr.2012.01.003).
[28]M. Mashayekhpour, C. Marchioli, S. Lovecchio, E. N. Lay, and A. Soldati, "Wind effect on gyrotactic micro-organism surfacing in free-surface turbulence," Advances in Water Resources, 2017 (10.1016/j.advwatres.2017.09.001).
[29]J. Shaw and M. Stastna, "A model for shear response in swimming plankton," Progress in Oceanography, vol. 151, pp. 1-12, 2017 (10.1016/j.pocean.2016.10.012).
[30]B. Rothschild and T. Osborn, "Small-scale turbulence and plankton contact rates," Journal of Plankton Research, vol. 10, no. 3, pp. 465-474, 1988 (10.1093/plankt/10.3.465).
[31]C. Marrase, J. H. Costello, T. Granata, and J. R. Strickler, "Grazing in a turbulent environment: energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus," Proceedings of the National Academy of Sciences, vol. 87, no. 5, pp. 1653-1657, 1990 (10.1073/pnas.87.5.1653).
[32]J. H. Muelbert, M. R. Lewis, and D. E. Kelley, "The importance of small-scale turbulence in the feeding of herring larvae," Journal of Plankton Research, vol. 16, no. 8, pp. 927-944, 1994 (10.1093/plankt/16.8.927).
[33]T. Ki?rboe and B. MacKenzie, "Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size," Journal of Plankton Research, vol. 17, no. 12, pp. 2319-2331, 1995 (10.1093/plankt/17.12.2319).
[34]H. Yamazaki, T. R. Osborn, and K. D. Squires, "Direct numerical simulation of planktonic contact in turbulent flow," Journal of Plankton Research, vol. 13, no. 3, pp. 629-643, 1991 (10.1093/plankt/13.3.629).
[35]D. Lewis and T. Pedley, "The influence of turbulence on plankton predation strategies," Journal of Theoretical Biology, vol. 210, no. 3, pp. 347-365, 2001 (10.1006/jtbi.2001.2310).
[36]J. Yen and D. M. Fields, "Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda)," Arch. Hydrobiol. Beih. Ergebn. Limnol, vol. 36, pp. 123-134, 1992
[37]D. M. Fields and J. Yen, The escape behaviour of Pleuromamma xiphias in response to a quantifiable fluid mechanical disturbance (Zooplankton: Sensory Ecology and Physiology). 1996, pp. 323-340.
[38]H. E. Robinson, C. M. Finelli, and E. J. Buskey, "The turbulent life of copepods: effects of water flow over a coral reef on their ability to detect and evade predators," Marine Ecology Progress Series, vol. 349, pp. 171-181, 2007 (10.3354/meps07123).
[39]H. P?cseli and J. Trulsen, "Plankton''s perception of signals in a turbulent environment," Advances in Physics: X, vol. 1, no. 1, pp. 20-34, 2016 (10.1080/23746149.2015.1136567).
[40]J. S. Guasto, R. Rusconi, and R. Stocker, "Fluid mechanics of planktonic microorganisms," Annual Review of Fluid Mechanics, vol. 44, pp. 373-400, 2012 (10.1146/annurev-fluid-120710-101156).
[41]A. Chengala, M. Hondzo, and J. Sheng, "Microalga propels along vorticity direction in a shear flow," Physical Review E, vol. 87, no. 5, p. 052704, 2013 (10.1103/PhysRevE.87.052704).
[42]A. H. Meitzler, H. F. Tiersten, A. W. Warner, D. Berlincourt, G. A. Couqin, and F. S. Welsh III, "IEEE standard on piezoelectricity," ed: Society, 1988.
[43]"IEEE Standard Definitions and Methods of Measurement for Piezoelectric Vibrators," IEEE Std 177, 1966 (10.1109/JRPROC.1958.286752).
[44]E. Hanson, Recent Progress in Ink Jet Technologies II. Society for Imaging Science and Technology, 1999.
[45]B. Wang, X. Chu, E. Li, and L. Li, "Simulations and analysis of a piezoelectric micropump," Ultrasonics, vol. 44, pp. e643-e646, 2006 (10.1016/j.ultras.2006.05.018).
[46]C. Schabmueller, M. Koch, M. Mokhtari, A. Evans, A. Brunnschweiler, and H. Sehr, "Self-aligning gas/liquid micropump," Journal of Micromechanics and Microengineering, vol. 12, no. 4, p. 420, 2002 (10.1088/0960-1317/12/4/313).
[47]N. Schneeberger, R. Allendes, F. Bianchi, E. Chappel, C. Conan, S. Gamper, and M. Schlund, "Drug delivery micropump with built-in monitoring," Procedia Chemistry, vol. 1, no. 1, pp. 1339-1342, 2009 (10.1016/j.proche.2009.07.334).
[48]R. Kant, D. Singh, and S. Bhattacharya, "Digitally controlled portable micropump for transport of live micro-organisms," Sensors and Actuators A: Physical, vol. 265, pp. 138-151, 2017 (10.1016/j.sna.2017.05.016).
[49]T. X. Dinh, V. T. Dau, S. Sugiyama, and P. H. Pham, "Fluidic device with pumping and sensing functions for precise flow control," Sensors and Actuators B: Chemical, vol. 150, no. 2, pp. 819-824, 2010 (10.1016/j.snb.2010.08.009).
[50]M. Rossi, R. Segura, C. Cierpka, and C. J. K?hler, "On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV," Experiments in Fluids, vol. 52, no. 4, pp. 1063-1075, 2012 (10.1007/s00348-011-1194-z).
[51]C. J. Bourdon, M. G. Olsen, and A. D. Gorby, "The depth of correlation in micro-PIV for high numerical aperture and immersion objectives," Journal of Fluids Engineering, vol. 128, no. 4, pp. 883-886, 2006 (10.1115/1.2201649).
[52]W. Thielicke, E. Stamhuis, W. Thielicke, and E. Stamhuis. PIVlab-Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB.
[53]W. Thielicke and E. Stamhuis, "PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB," Journal of Open Research Software, vol. 2, no. 1, 2014 (10.5334/jors.bl).
[54]R. Goldstein, Fluid Mechanics Measurements. Routledge, 2017.
[55]J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, no. 4, pp. 316-319, 1998 (10.1007/s003480050235).
[56]F. M. White and I. Corfield, Viscous Fluid Flow. McGraw-Hill New York, 2006.
[57]f/2 Medium. Available: https://ncma.bigelow.org/media/wysiwyg/Algal_recipes/NCMA_algal_medium_f_2_1.pdf
[58]S. W. Li, "On the Planktonic Locomotion in a Mcriofluidic Device," 2016 10.6342/ntu201600902.
[59]N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979
[60]C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, "NIH Image to ImageJ: 25 years of image analysis," Nature methods, vol. 9, no. 7, p. 671, 2012
[61]R. A. Despard, J. A. Miller, " Separation in oscillating laminar boundary-layer flows," Journal of Fluid Mechanics, 47(1), 21-31. doi:10.1017/S0022112071000909
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top