|
[1]D. M. Karl, E. A. Laws, P. Morris, and S. Emerson, "Global carbon cycle (communication arising): metabolic balance of the open sea," Nature, vol. 426, no. 6962, p. 32, 2003 (10.1038/426032a). [2]C. L. Folt and C. W. Burns, "Biological drivers of zooplankton patchiness," Trends in Ecology & Evolution, vol. 14, no. 8, pp. 300-305, 1999 (10.1016/S0169-5347(99)01616-X). [3]S. Ghosal, M. Rogers, and A. Wray, "The turbulent life of phytoplankton," in Center for Turbulence Research Proceeding of the Summer Program, 2000, pp. 31-45, [4]R. Rusconi, M. Garren, and R. Stocker, "Microfluidics expanding the frontiers of microbial ecology," Annual Review of Biophysics, vol. 43, pp. 65-91, 2014 (10.1146/annurev-biophys-051013-022916). [5]R. Stocker, "Microorganisms in vortices: a microfluidic setup," Limnology and Oceanography: Methods, vol. 4, no. 10, pp. 392-398, 2006 (10.4319/lom.2006.4.392). [6]U. Timm and A. Okubo, "Gyrotaxis: interaction between algae and flagellates," Bulletin of Mathematical Biology, vol. 57, no. 5, pp. 631-650, 1995 (10.1016/S0092-8240(05)80766-9). [7]D. M. Fields and J. Yen, "The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance," Journal of Plankton Research, vol. 19, no. 9, pp. 1289-1304, 1997 (10.1093/plankt/19.9.1289). [8]W. M. Durham, J. O. Kessler, and R. Stocker, "Disruption of vertical motility by shear triggers formation of thin phytoplankton layers," Science, vol. 323, no. 5917, pp. 1067-1070, 2009 (10.1126/science.1167334). [9]M. T. Barry, R. Rusconi, J. S. Guasto, and R. Stocker, "Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton," Journal of The Royal Society Interface, vol. 12, no. 112, pp. 1-13, 2015 (10.1098/rsif.2015.0791). [10]A. R. Place, H. A. Bowers, T. R. Bachvaroff, J. E. Adolf, J. R. Deeds, and J. Sheng, "Karlodinium veneficum-The little dinoflagellate with a big bite," Harmful Algae, vol. 14, pp. 179-195, 2012 (10.1016/j.hal.2011.10.021). [11]T. Bergholtz, N. Daugbjerg, ?. Moestrup, and M. Fern?ndez?Tejedor, "On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition.," Journal of Phycology, vol. 42, no. 1, pp. 170-193, 2006 (10.1111/j.1529-8817.2006.00172.x). [12]J. E. Adolf, D. K. Stoecker, and L. W. Harding, "Autotrophic growth and photoacclimation in Karlodinium micrum (Dinophyceae) and Storeatula major (Cryptophyceae)," Journal of Phycology, vol. 39, no. 6, pp. 1101-1108, 2003 (10.1111/j.0022-3646.2003.02-086.x). [13]A. Li, D. K. Stoecker, and J. E. Adolf, "Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum," Aquatic Microbial Ecology, vol. 19, no. 2, pp. 163-176, 1999 (10.3354/ame019163). [14]A. Li, D. K. Stoecker, and D. W. Coats, "Use of the ''food vacuole content''method to estimate grazing by the mixotrophic dinoflagellate Gyrodinium galatheanum on cryptophytes," Journal of Plankton Research, vol. 23, no. 3, pp. 303-318, 2001 (10.1093/plankt/23.3.303). [15]J. E. Adolf, D. Krupatkina, T. Bachvaroff, and A. R. Place, "Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum," Harmful Algae, vol. 6, no. 3, pp. 400-412, 2007 (10.1016/j.hal.2006.12.003). [16]J. E. Adolf, C. L. Yeager, W. D. Miller, M. E. Mallonee, and L. W. Harding Jr, "Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA," Estuarine, Coastal and Shelf Science, vol. 67, no. 1-2, pp. 108-122, 2006 (10.1016/j.ecss.2005.11.030). [17]D. K. Stoecker, J. E. Adolf, A. R. Place, P. M. Glibert, and D. W. Meritt, "Effects of the dinoflagellates Karlodinium veneficum and Prorocentrum minimum on early life history stages of the eastern oyster (Crassostrea virginica)," Marine Biology, vol. 154, no. 1, pp. 81-90, 2008 (10.1007/s00227-007-0901-z). [18]J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, "Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates," Proceedings of the National Academy of Sciences, vol. 104, no. 44, pp. 17512-17517, 2007 (10.1073/pnas.0704658104). [19]J. Sheng, E. Malkiel, J. Katz, J. E. Adolf, and A. R. Place, "A dinoflagellate exploits toxins to immobilize prey prior to ingestion," Proceedings of the National Academy of Sciences, vol. 107, no. 5, pp. 2082-2087, 2010 (10.1073/pnas.0912254107). [20]C. Fuentes-Gr?newald, E. Garc?s, S. Rossi, and J. Camp, "Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production," Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 9, pp. 1215-1224, 2009 (10.1007/s10295-009-0602-3). [21]J. O. Kessler, "Gyrotactic buoyant convection and spontaneous pattern formation in algal cell cultures," in Nonequilibrium cooperative phenomena in physics and related fields: Springer, 1984, pp. 241-248. [22]M. M. Dekshenieks, P. L. Donaghay, J. M. Sullivan, J. E. Rines, T. R. Osborn, and M. S. Twardowski, "Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes," Marine Ecology Progress Series, vol. 223, pp. 61-71, 2001 (10.3354/meps223061). [23]P. J. Franks, "Thin layers of phytoplankton: a model of formation by near-inertial wave shear," Deep Sea Research Part I: Oceanographic Research Papers, vol. 42, no. 1, pp. 75-91, 1995 (10.1016/0967-0637(94)00028-Q). [24]A. M. Roberts and F. M. Deacon, "Gravitaxis in motile micro-organisms: the role of fore-aft body asymmetry," Journal of Fluid Mechanics, vol. 452, pp. 405-423, 2002 (10.1017/S0022112001006772). [25]J. O. Kessler, "Hydrodynamic focusing of motile algal cells," Nature, vol. 313, no. 5999, p. 218, 1985 (10.1038/313218a0). [26]M. Lebert and D.-P. H?der, "How Euglena tells up from down," Nature, vol. 379, no. 6566, pp. 590-590, 1996 (10.1038/379590a0). [27]M. S. Hoecker-Mart?nez and W. D. Smyth, "Trapping of gyrotactic organisms in an unstable shear layer," Continental Shelf Research, vol. 36, pp. 8-18, 2012 (10.1016/j.csr.2012.01.003). [28]M. Mashayekhpour, C. Marchioli, S. Lovecchio, E. N. Lay, and A. Soldati, "Wind effect on gyrotactic micro-organism surfacing in free-surface turbulence," Advances in Water Resources, 2017 (10.1016/j.advwatres.2017.09.001). [29]J. Shaw and M. Stastna, "A model for shear response in swimming plankton," Progress in Oceanography, vol. 151, pp. 1-12, 2017 (10.1016/j.pocean.2016.10.012). [30]B. Rothschild and T. Osborn, "Small-scale turbulence and plankton contact rates," Journal of Plankton Research, vol. 10, no. 3, pp. 465-474, 1988 (10.1093/plankt/10.3.465). [31]C. Marrase, J. H. Costello, T. Granata, and J. R. Strickler, "Grazing in a turbulent environment: energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus," Proceedings of the National Academy of Sciences, vol. 87, no. 5, pp. 1653-1657, 1990 (10.1073/pnas.87.5.1653). [32]J. H. Muelbert, M. R. Lewis, and D. E. Kelley, "The importance of small-scale turbulence in the feeding of herring larvae," Journal of Plankton Research, vol. 16, no. 8, pp. 927-944, 1994 (10.1093/plankt/16.8.927). [33]T. Ki?rboe and B. MacKenzie, "Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size," Journal of Plankton Research, vol. 17, no. 12, pp. 2319-2331, 1995 (10.1093/plankt/17.12.2319). [34]H. Yamazaki, T. R. Osborn, and K. D. Squires, "Direct numerical simulation of planktonic contact in turbulent flow," Journal of Plankton Research, vol. 13, no. 3, pp. 629-643, 1991 (10.1093/plankt/13.3.629). [35]D. Lewis and T. Pedley, "The influence of turbulence on plankton predation strategies," Journal of Theoretical Biology, vol. 210, no. 3, pp. 347-365, 2001 (10.1006/jtbi.2001.2310). [36]J. Yen and D. M. Fields, "Escape responses of Acartia hudsonica (Copepoda) nauplii from the flow field of Temora longicornis (Copepoda)," Arch. Hydrobiol. Beih. Ergebn. Limnol, vol. 36, pp. 123-134, 1992 [37]D. M. Fields and J. Yen, The escape behaviour of Pleuromamma xiphias in response to a quantifiable fluid mechanical disturbance (Zooplankton: Sensory Ecology and Physiology). 1996, pp. 323-340. [38]H. E. Robinson, C. M. Finelli, and E. J. Buskey, "The turbulent life of copepods: effects of water flow over a coral reef on their ability to detect and evade predators," Marine Ecology Progress Series, vol. 349, pp. 171-181, 2007 (10.3354/meps07123). [39]H. P?cseli and J. Trulsen, "Plankton''s perception of signals in a turbulent environment," Advances in Physics: X, vol. 1, no. 1, pp. 20-34, 2016 (10.1080/23746149.2015.1136567). [40]J. S. Guasto, R. Rusconi, and R. Stocker, "Fluid mechanics of planktonic microorganisms," Annual Review of Fluid Mechanics, vol. 44, pp. 373-400, 2012 (10.1146/annurev-fluid-120710-101156). [41]A. Chengala, M. Hondzo, and J. Sheng, "Microalga propels along vorticity direction in a shear flow," Physical Review E, vol. 87, no. 5, p. 052704, 2013 (10.1103/PhysRevE.87.052704). [42]A. H. Meitzler, H. F. Tiersten, A. W. Warner, D. Berlincourt, G. A. Couqin, and F. S. Welsh III, "IEEE standard on piezoelectricity," ed: Society, 1988. [43]"IEEE Standard Definitions and Methods of Measurement for Piezoelectric Vibrators," IEEE Std 177, 1966 (10.1109/JRPROC.1958.286752). [44]E. Hanson, Recent Progress in Ink Jet Technologies II. Society for Imaging Science and Technology, 1999. [45]B. Wang, X. Chu, E. Li, and L. Li, "Simulations and analysis of a piezoelectric micropump," Ultrasonics, vol. 44, pp. e643-e646, 2006 (10.1016/j.ultras.2006.05.018). [46]C. Schabmueller, M. Koch, M. Mokhtari, A. Evans, A. Brunnschweiler, and H. Sehr, "Self-aligning gas/liquid micropump," Journal of Micromechanics and Microengineering, vol. 12, no. 4, p. 420, 2002 (10.1088/0960-1317/12/4/313). [47]N. Schneeberger, R. Allendes, F. Bianchi, E. Chappel, C. Conan, S. Gamper, and M. Schlund, "Drug delivery micropump with built-in monitoring," Procedia Chemistry, vol. 1, no. 1, pp. 1339-1342, 2009 (10.1016/j.proche.2009.07.334). [48]R. Kant, D. Singh, and S. Bhattacharya, "Digitally controlled portable micropump for transport of live micro-organisms," Sensors and Actuators A: Physical, vol. 265, pp. 138-151, 2017 (10.1016/j.sna.2017.05.016). [49]T. X. Dinh, V. T. Dau, S. Sugiyama, and P. H. Pham, "Fluidic device with pumping and sensing functions for precise flow control," Sensors and Actuators B: Chemical, vol. 150, no. 2, pp. 819-824, 2010 (10.1016/j.snb.2010.08.009). [50]M. Rossi, R. Segura, C. Cierpka, and C. J. K?hler, "On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV," Experiments in Fluids, vol. 52, no. 4, pp. 1063-1075, 2012 (10.1007/s00348-011-1194-z). [51]C. J. Bourdon, M. G. Olsen, and A. D. Gorby, "The depth of correlation in micro-PIV for high numerical aperture and immersion objectives," Journal of Fluids Engineering, vol. 128, no. 4, pp. 883-886, 2006 (10.1115/1.2201649). [52]W. Thielicke, E. Stamhuis, W. Thielicke, and E. Stamhuis. PIVlab-Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB. [53]W. Thielicke and E. Stamhuis, "PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB," Journal of Open Research Software, vol. 2, no. 1, 2014 (10.5334/jors.bl). [54]R. Goldstein, Fluid Mechanics Measurements. Routledge, 2017. [55]J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, no. 4, pp. 316-319, 1998 (10.1007/s003480050235). [56]F. M. White and I. Corfield, Viscous Fluid Flow. McGraw-Hill New York, 2006. [57]f/2 Medium. Available: https://ncma.bigelow.org/media/wysiwyg/Algal_recipes/NCMA_algal_medium_f_2_1.pdf [58]S. W. Li, "On the Planktonic Locomotion in a Mcriofluidic Device," 2016 10.6342/ntu201600902. [59]N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-66, 1979 [60]C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, "NIH Image to ImageJ: 25 years of image analysis," Nature methods, vol. 9, no. 7, p. 671, 2012 [61]R. A. Despard, J. A. Miller, " Separation in oscillating laminar boundary-layer flows," Journal of Fluid Mechanics, 47(1), 21-31. doi:10.1017/S0022112071000909
|