第六章 參考文獻
[1].C. Navas, R. Colaco, J. de Damborenea and R. Vilar, “Abrasive wear behavior of laser clad and flame sprayed-melted NiCrBSi coatings”, Surface and Coatings Technology, vol.200, 2006, pp.6854-6852.
[2].A. A. Torrance, “Modelling abrasive wear”, Wear, vol.258, 2005, pp.281-293.
[3].F. Otsubo, H. Era and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron”, Journal of Thermal Spray Technology, vol.9, 2000, pp.107-113.
[4].I. C. Grigorescu, C. Di Rauso, R. Drira-Halouani, B. Lavelle, R. DiGiampaolo and J. Lira, “Phase characterization in Ni alloy-hard carbide composites for fused coatings” , Surface and Coatings Technology, vol.76-77, 1995, pp.494-498.
[5].陳怡元、鄒正光、龍飛,“碳化鈦基金屬陶瓷的合成及其應用研究現狀”,鈦工業進展,vol.24, 2007, pp.5-8.
[6].胡正西,“碳化鈦基金屬陶瓷主要製備方法”,賀州學院學報,vol.24, 2008, pp.140-143.
[7].郭繼偉、劉欽雷、榮守範、宋春梅,“碳化鈦系鋼結硬質合金的研究現狀”,鑄造設備與工藝,2010, pp.48-53.
[8].沈強、張聯盟、涂溶,“Mo添加對Ni3Al-TiC潤濕特性的影響機制研究”,無機材料學報,vol.324, 2002, pp.1306-1310.
[9].陳兆盈、陳蔚,“碳化鈦硬質合金”,硬質合金,vol.20, 2003, pp.197-199.
[10].X. Wang, M. Zhang, Z. Zou and S. Qu, “Microscopic and properties of laser clad TiC-NiCrBSi-rare earth composite coating”, Surface and Coatings Technology, vol.161, 2002, pp.195-199.
[11].Q. Li, T. C. Lei and W. Z. Chen, “Microstructural characterization of laser-clad TiCp-reinforced Ni-Cr-B-Si-C composite coatings on steel”, Surface and Coatings Technology, vol.114, 1999, pp.278-284.
[12].S. Yang , M. Zhong and W. Liu, “TiC particulate composite coating produced in situ by laser cladding”, Materials Science and Engineering, vol.343, 2003, pp.57-62.
[13].S. Yang, W. Liu, M. Zhong and Z. Wang, “TiC reinforced composite coating produced by powder feeding laser cladding”, Materials Letters, vol.58, 2004, pp.2958-2962.
[14].S. Yang, W. Liu and M. Zhong, “In-situ TiC Reinforced Composite Coating Produced by Powder Feeding Laser Cladding”, Journal of Materials Science Technology, vol.22, 2006, pp.519-525.
[15].C. Cui, Z. Guo, H. Wang and J. Hu, “In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system”, Journal of Materials Processing Technology, vol.183, 2007, pp.380-385.
[16].S. Yang, N. Chen, W. Liu, M. Zhong, Z. Wang and Hiroyuki Kokawa, “Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding”, Surface and Coatings Technology, vol.183, 2004, pp.254-260.
[17].Y. Guo, “Application of In-situ Synthesized TiC Reinforced Ni Based Composite Coatings by Laser Cladding on Piercing Plug”, Modern Applied Science, vol.3, 2009, pp.64-69.
[18].X. Wu and Y. Hong, “Microstructure and mechanical properties at TiCp/Ni-alloy interfaces in laser-synthesized coatings”, Materials Science and Engineering A, vol.318, 2001, pp.15-21.
[19].H. C. Man, S. Zhang, F. T. Cheng and T. M. Yue, “Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding”, Scripta Mater, vol.44, 2001, pp.2801-2807.
[20].R. L. Sun, J. F. Mao and D. Z. Yang, “Microstructural characterization of NiCrBSiC laser clad layer on titanium alloy substrate”, Surface and Coatings Technology, vol.150, 2002, pp.199-204.
[21].J. H. Ouyang, Y. T Pei, T. C. Lei and Y. Zhou, “Tribological behavior of laser-clad TiCP composite coating”, Wear, vol.185, 1995, pp.167-172.
[22].K. Nakata, H. Nagakura, Y. Honda and S. Tomida, “Laser cladding of TiC dispersed Ni-Cr composite layer on carbon steel”, Transactions of Joining and Welding Research Institute, vol.26, 1997, pp.91-93.
[23].J. H. Ouyang, X. Li and T. C. Lei, “Electron microscopy structure study of laser-clad TiC-Ni particle-reinforced coating”, Journal of Materials Engineering Performance, vol.9, 2000, pp.234-246.
[24].R. L. Sun, D. Z. Yang, L. X. Guo and S. L. Dong, “Laser cladding of Ti-6Al-4V alloy with TiC and TiC-NiCrBSi powders”, Surface and Coatings Technology, vol.135, 2001, pp.307-312.
[25].R. L. Sun, J. F. Mao and D. Z. Yang, “Microscopic morphology and distribution of TiC phase in laser clad NiCrBSi-TiC layer on titanium alloy substrate”, Surface and Coatings Technology, vol.155, 2002, pp.203-207.
[26].楊森、鍾敏霖、劉文今,“激光熔覆製備Ni/TiC原位自生複合塗層及其組織形成規律研究”,應用激光,vol.22, 2002, pp.105-109.
[27].R. L. Sun, Y. W. Lei and W. Niu, “Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using CO2 laser”, Surface and Coatings Technology, vol.203, 2009, pp.1395-1399.
[28].趙衛民、赫慶坤、韓彬、楊明磊,“TiC-NiCrBSi複合材料的激光熔覆製備成形性分析”,焊接學報,vol.31, 2010, pp.28-32.
[29].S. Economou, M. De Bonte , J.P. Cells, R. W. Smith and E. Lugscheider, “Processiog, structure and tribological behaviour of TiC-reinforced plasma sprayed coatings”, Wear, vol.220, 1998, pp.34-50.
[30].A. J. Horlock, Z. Sadeghian, D. G. McCartney and P. H. Shipway, “High-velocity oxyfuel reactive spraying of mechanically alloyed Ni-Ti-C powders”, Journal of Thermal Spray Technology , vol.14, 2005, pp.77-84.
[31].H. Wang, S. Zhang, J. Zhu, J. Huang, H. Liu and H. Zhang, “In Situ TiC-Reinforced Ni-Based Composite Coating Prepared by Flame Spraying Using Sucrose as the Source of Carbon”, Journal of Thermal Spray Technology, vol.18, 2009, pp.103-109.
[32].Z. Liu, J. Tian, B. Li and L. Zhao, “Microstructure and mechanical behaviors of in situ TiC particulates reinforced Ni matrix composites”, Materials Science and Engineering A, vol.527, 2010, pp.3898-3903.
[33].王振廷、孟君晟、陳麗麗、周曉暉,“感應熔覆原位自生TiC/Ni基複合塗層組織和形成機理”,材料熱處理學報,vol.28, 2007, pp.99-103.
[34].王振廷、王永東、陳華輝,“感應熔覆原位自生TiC/Ni基複合塗層的組織與耐磨性研究”,材料保護,vol.39, 2006, pp.10-12.
[35].王振廷、孟君晟、王永東、胡國梁,“原位自生TiCp/Ni60A複合塗層組織結構及長大特性”,稀有金屬材料與工程,vol.36, 2007, pp.709-711.
[36].F. Akhtara and S. J. Guo, “Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites”, Materials Characterization, vol.59, 2008, pp.84-90.
[37].M. S. Song, M. X. Zhang, S. G. Zhang, B. Huang and J. G. Li, “In situ fabrication of TiC particulates locally reinforced aluminum matrix composites by self-propagating reaction during casting”, Materials Science and Engineering A, vol.473, 2008, pp.166-171.
[38].M. Krasnowski and T. Kulik, “Nanocomposites obtained by mechanical alloying in Fe-Al-Ti-C system”, Journal of Alloys and Compounds, vol.448, 2008, pp.227-233.
[39].D. Strzeciwilk, Z. Wokulski and P. Tkacz, “Microstructure of TiC crystals obtained from high temperature nickel solution”, Journal of Alloys and Compounds, vol.350, 2003, pp.256-263.
[40].L. Huang, H. Y. Wang, F. Qiu and Q. C. Jiang, “Synthesis of dense ceramic particulate reinforced composites from Ni-Ti-C, Ni-Ti-B, Ni-Ti-B4C and Ni-Ti-C-B systems via the SHS reaction, arc melting and suction casting”, Materials Science and Engineering A , vol.422, 2006, pp.309-315.
[41].Y. F. Yang, H. Y. Wang, R. Y. Zhao, Y. H. Liang, L. Zhan and Q. C. Jiang, “Effects of C particle size on the ignition and combustion characteristics of the SHS reaction in the 20 wt.% Ni-Ti-C system”, Journal of Alloys and Compounds , vol.460, 2008, pp.276-282.
[42].Y. F. Yang, H. Y. Wang, J. G. Wang and Q. C. Jiang, “Effect of C particle size on the mechanism of self-propagation high-temperature synthesis in the Ni-Ti-C system”, Journal of Alloys and Compounds, vol.509, 2011, pp.7060-7065.
[43].Y. Li, P. Bai, Y. Wang, J. Hu and Z. Gao, “Effect of TiC content on Ni/TiC composites by direct laser fabrication”, Materials and Design, vol.30, 2009, pp.1409-1412.
[44].赫慶坤、王勇、趙衛民、程義遠,“激光原位合成TiC-Ni-Mo塗層界面組織與磨損性能”,焊接學報,vol.30, 2009, pp.77-80.
[45].H. Y. Wang, L. Huang and Q. C. Jiang, “In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting”, Materials Science and Engineering A, vol.407, 2005, pp.98-104.
[46].H. Wang, S. Sun, D. Wang and G. Tu, “Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering”, Powder Technology, vol.217, 2012, pp.340-346.
[47].D. Gu, W. Meiners, C. Li and Y. Shen, “In situ synthesized TiC/Ti5Si3 nanocomposites by high-energy mechanical alloying: Microstructural development and its mechanism”, Materials Science and Engineering A, vol.527, 2010, pp.6340-6345.
[48].寺井精英,“ステンレス鋼的熔接技術”,ステンレス鋼技術的進步,昭和52年,第44-54回。
[49].S. C. Tjong and Z. Y. Ma, “Microstructural and mechanical characteristics of in situ metal matrix composites”, Materials Science and Engineering, vol.29, 2000, pp.49-113.
[50].L. Zhong, Y. Xu, M. Hojamberdiev and J. Wang, “In situ fabrication of titanium carbide particulates-reinforced iron matrix composites”, Materials and Design, vol.32, 2011, pp.3790-3795.
[51].J. H. Tylczak and Albany Oregon, “Abrasive Wear” ASM Handbook, ASM International, vol.18, 1992, pp.337-351.
[52].Y. F. Yang, H. Y. Wang, J. G. Wang, R. Y. Zhao and Q. C. Jiang, “Thermal explosion reaction behaviors between Ti and C with Ni as additive under air and Ar atmosphere”, Journal of Alloys and Compounds, vol.486, 2009, pp.191-194.
[53].J. C. Lasalvia, D. K. Kim, R. A. Lipsett and M. A. Meyers, “Combustion Synthesis in the Ti-C-Ni-Mo System: Part I.
Micromechanisms”, Metallurgicaland Materials Transactions A, vol.26A, 1995, pp.3001-3009.
[54].J. C. Lasalvia and M. A. Meyers, “Combustion Synthesis in the Ti-C-Ni-Mo System: Part II. Analysis”, Metallurgicaland Materials Transactions A, vol.26A, 1995, pp.3011-3019.
[55].“Annual Book of ASTM Standards G40-94”, ASTM, vol.3, 1994, p.165.
[56].Czichos, H. , Habig, K. H., Tribologie-Handbuch; Reibung und Verschleiß 2nd edition, German, 2003.
[57].G. Levy, R. G. Linford and L. A. Mitchell, “Wear behavior and mechanical properties : the similarity of seemingly unrelated approaches”, Wear, vol.21, 1972, pp.167-177.
[58].J. T. Burwell, “Survey of possible wear mechanisms”, Wear, vol.1, 1957, pp.119-141.
[59].K. H. Zum Gahr, Microstructure and wear of materials, Elsevier Science PublisherB, V. New York, 1987, pp.173-246.
[60].Blanchett, T. A. and Kennedy, F. E. , “The development of transfer films in ultra-high molecular weight polyethylene/stainless steel oscillatory sliding”, Tribology Transactions, vol.32, 1989, pp. 371-379.
[61].K. H. Zum Gahr, “Wear by hard particles”, Tribology International, vol.31, 1998, pp.587-596.
[62].K. Hokkirigawa, T. Kato, T. Fukuda and M. Shinooka, “Experimental and theoretical analysis of wear mechanism of metals in tilted block on plate type sliding”, Wear, vol.214, 1998, pp.192-201.
[63].J. J. Coronado, “Effect of abrasive size on wear”, Abrasion Resistance of Materials, 2012, pp.167-184.
[64].P. Groche, G. Nitzsche and A. Elsen, “Adhesive wear in deep drawing of aluminum sheets”, CIRP Annals-Manufacturing Technology, vol.57, 2008, pp.295-298.
[65].N. P. Suh, “The delamination theory of wear”, Wear, vol.25, 1973, pp.111-124.
[66].N. P. Suh, “An overview of the delamination theory of wear”, Wear, vol.44, 1977, pp.1-16.
[67].P. K. Rohatgi, Y. Liu and S. Ray, “Friction and wear of metal-matrix
composites”, ASM Handbook, ASM International, vol.18, 1992, pp.1629-1655.
[68].S. Izman, Mohammed Rafiq Abdul-Kadir, Mahmood Anwar,
E. M. Nazim, R. Rosliza, A. Shah1 and M. A. Hassan, “Surface modification techniques for biomedical grade of titanium alloys: oxidation, carburization and ion implantation processes”, Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications, 2012, pp.201-228.
[69].T. F. J. Quinn, Physical Analysis for Tribology, Cambridge University Press, 1991, pp.29-34.
[70].S. C. Lim, M. F. Ashby and J. H. Brunton, “The effects of sliding conditions on the dry friction of metals”, Acta Materialia, vol.37, 1989, pp.767-772.
[71].T. F. J. Quinn, Brit. J. , Appl. Phys., vol.13, 1962, p.33.
[72].K. H. Zum Gahr, “Microstructure and wear of materials”, Elsevier, 1987, pp.323-325.
[73].“Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count”, ASTM E562-01, 2005, pp.1-7.
[74].王梓丞,石墨與鈦添加量、熔解條件對真空感應熔融鎳基合金顯微組織之影響,國立臺南大學材料科學系碩士論文,2013。[75].Y. T. Pei and T. C. Zuo, “Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating”, Materials Science and Engineering A, vol.241, 1998, pp.259-263.
[76].K.S. Ravi Chandran, K.B. Panda and S.S. Sahay, “TiBw-reinforced Ti composites: processing, properties, application prospects, and research needs”, Ti-B Alloys and Composites, 2004, pp. 42-48.
[77].J. F. Shackelford and W. Alexander, “Materials Science and Engineering Handbook”, vol.3, 2001, pp.746-747.