跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林恩頡
研究生(外文):En-Chieh Lin
論文名稱:以動物模式驗證減藍光鍍膜鏡片用於減緩LED照明所造成視覺生理功能改變之分析
論文名稱(外文):Analysis the protective effects of blue-light cutting spectacle lens against LED lighting induced visual physiological changes in the mouse model.
指導教授:陳伯易
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:生物醫學科學學系碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:88
中文關鍵詞:藍光視力視網膜視覺生理功能視覺生理失調減藍光鏡片
外文關鍵詞:Blue lightVisual acuityRetinaVisual physiological functionPhysiologic maladjustment of visionBlue light cutting spectacle lens
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
視覺疾病的威脅、視覺生理失調與眼睛疲勞症狀,將會成為一個當代普及的問題。而來自智慧型手機、平板電腦、家用電腦與LED照明之高能量的藍光被認為是引起這些視覺問題發展的因素之一。短波長藍紫光比其他波段的可見光,更容易傷害視覺系統。減藍光鏡片常使用於管理藍光量避免其所造成的視覺問題,然而,此用途之訴求在生物體之視覺生理系統的驗證研究並不完整。本研究目的在動物模式探討減藍光鏡片對於預防LED照明 (400-1000lux) 所引起的視覺生理功能下降的效果。ICR小鼠隨機分為4組:(1)空白對照組 (Blank control) ; (2) LED照射組 (LED組) ; (3) LED照射且使用無減藍光鏡片組 (LED + Un-BLC組) ; (4) LED照射且使用減藍光鏡片組 (LED + BLC組)。在此實驗模式下,本實驗分析策略採取視覺生理功能評估與視網膜組織分析方法進行驗證減藍光鏡片的預防效果。完成LED光照刺激後,與LED + BLC組小鼠相比,結果發現LED組與LED + Un-BLC組組小鼠的視力值明顯降低、延遲瞳孔對光反應的時間並且損失了感光細胞在視網膜組織結構上的完整性。雖然與Blank control組小鼠相比,發現 LED + BLC組的小鼠視力仍然有輕微下降的問題,但其視力值維持的程度比LED組與LED + Un-BLC組組來的佳,且有高度的顯著性。研究最後指出,小鼠視覺生理功能的表現與感光細胞損傷程度有高度的相關性。本研究證明減藍光鏡片在生物體之視覺生理系統,有助於視覺的健康。

Vision-threatening diseases, physiologic maladjustment of vision, and eye strain symptoms will become common problem. One cause of these problems is believed to be the high energy blue light emitted from the display on is considered as devices, such as smart phones, tablet devices, computers and LED lighting. Blue light with short wavelength is more harmful to visual system than the other wavelengths of visual light. The blue light cutting spectacle lens are usually used against the blue light related vision problems, but it’s efficacy in the bio-physiological visual system is not well studied. This study aims to the preventive effects of spectacle lens coating for blue light cutting and against the LED lighting (400-1000lux) induced declining of visual physiological function in vivo. ICR mice were randomly divided into 4 groups: (1) normal blank control (Blank control group), (2) LED lighting exposure (LED group), (3) LED lighting exposure group under protection with Un-Blue-Light Cutting spectacle lens (LED + Un-BLC group), (4) LED lighting exposure group under protection with Blue-Light Cutting spectacle lens (LED + BLC group). The visual physiological function assessment and retinal histological analysis were performed to evaluate the preventive effects of blue light cutting spectacle lens in the mouse model. After LED lighting exposure, the mouse showed significant decline of visual acuity, delay of pupil reflex time, and loss of cell integrity of photoreceptor in the retinal tissue in the LED group and LED + Un-BLC group, as compare to LED + BLC group. Although, slight degree of visual acuity was also occurred in the LED + BLC group as compare to blank control group, visual acuity of the LED + BLC group was more still better than LED group and LED + Un-BLC group. In addition, mush there is higher correlation between the decline of visual acuity and the degeneration of retinal photoreceptor. Taken together, this study demonstrated the spectacle lens with cutting blue light properties are helpful for visual health in the bio-physiological system in vivo.


中文摘要 ------------------------------------------------------------------------- I
英文摘要 ------------------------------------------------------------------------ II
第一章 前言 ------------------------------------------------------------------- 1
第二章 文獻回顧 ------------------------------------------------------------- 3
第一節 可見光 -------------------------------------------------------- 3
第二節 視網膜 -------------------------------------------------------- 4
第三節 黃斑部病變 ----------------------------------------------------- 7
第四節 光化學損傷 ----------------------------------------------------- 8
第三章 研究動機 ------------------------------------------------------------- 9
第四章 實驗設計與材料方法 --------------------------------------------- 11
第一節 動物實驗設計 ------------------------------------------------- 11
第二節 實驗材料 ------------------------------------------------------- 16
第三節 實驗方法 ------------------------------------------------------- 19
第五章 結果 ------------------------------------------------------------------ 30
第一節 視覺生理功能性評估 ---------------------------------------- 30
第二節 組織病理評估 ------------------------------------------------- 43
第三節 相關性分析 ---------------------------------------------------- 48
第六章 討論 ------------------------------------------------------------------ 59
第七章 結論 ------------------------------------------------------------------ 66
參考文獻 ----------------------------------------------------------------------- 84




[1]曾廣文、許淑芬、關宇翔、沈秉衡。眼解剖生理學 (Anatomy and phsiology of eye) 。華格那出版,2009。
[2]財團法人資訊工業策進會。「2014臺灣消費者行動裝置暨APP使用行為研究調查報告」。2014/12/29
[3]Kirk Smick, Thierry Villette, Michael E. Boulton, George C. Brainard, William Jones, Paul Karpecki, Ron Melton, Randall Thomas. Blue light hazard: New Knowledge, New approaches to Maintaining Ocular health. REPORT OF A ROUNDTABLE, 2013, New York City, USA.
[4]Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003, 424 (6944), 76-81.
[5]Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture,projections, and intrinsic photosensitivity. Science. 2002, 295 (5557), 1065-1070.
[6]Berson DM. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch. 2007, 454 (5), 849-855.
[7]Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini JP, Enouf O, Garcia M, Picaud S, Attia D. Light-emitting diodes (LED) for domestic lighting: any risks for the eye? 2011, 30(4),239-257.
[8]Noell WK. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res. 1980, 20 (12), 1163-1171.
[9]Nakanishi-Ueda T, Majima HJ, Watanabe K, Ueda T, Indo HP, Suenaga S, Hisamitsu T, Ozawa T, Yasuhara H, Koide R. Blue LED light exposure develops intracellular reactive oxygen species, lipid peroxidation, and subsequent cellular injuries in cultured bovine retinal pigment epithelial cells. Free Radic Res. 2013, 47 (10), 774-780.
[10]Bird AC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, de Jong PT, Klaver CC, Klein BE, Klein R. An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol. 1995, 39(5), 367-374.
[11]Sunness JS, Rubin GS, Applegate CA, Bressler NM, Marsh MJ, Hawkins BS, Haselwood D. Visual function abnormalities and prognosis in eyes with age-related geographic atrophy of the macula and good visual acuity. 1997, 104 (10), 1677-1691.
[12]Steinmetz RL, Haimovici R, Jubb C, Fitzke FW, Bird AC. Symptomatic abnormalities of dark adaptation in patients with age-related Bruch''s membrane change. Br J Ophthalmol. 1993, 77(9), 549-554.
[13]Coleman HR, Chan CC, Ferris FL 3rd, Chew EY. Age-related macular degeneration. Lancet. 2008, 372(9652), 1835-1845.
[14]Wu J, Chen E, Söderberg PG. Failure of ascorbate to protect against broadband blue light-induced retinal damage in rat. Graefes Arch Clin Exp Ophthalmol. 1999, 237 (10), 855-860.
[15]Hunter JJ, Morgan JI, Merigan WH, Sliney DH, Sparrow JR, Williams DR. The susceptibility of the retina to pho tochemical damage from visible light. Prog Retin Eye Res. 2012, 31(1), 28-42.
[16]Dawson W, Nakanishi-Ueda T, Armstrong D, Reitze D, Samuelson D, Hope M, Fukuda S, Matsuishi M, Ozawa T, Ueda T, Koide R. Local fundus response to blue (LED and laser) and infrared (LED and laser) sources. Exp Eye Res. 2001, 73 (1), 137-147.
[17]Hafezi F, Marti A, Munz K, Reme CE. Light-induced apoptosis: Differential timing in the retina and pigment epithelium. Exp Eye Res. 1997, 64 (6), 963-970.
[18]Charlotte E. Remé, Michael Weller, Piotr Szczesny, Kurt Munz, Farhad Hafezi, Jörg-Joachim Reinboth, Matthias Clausen. Light induced apoptosis in the rat retina in vivo. Degenerative Diseases of the Retina. Plenum Press, 1995, 19-24.
[19]Crockett RS, Lawwill T. Oxygen dependence of damage by 435 nm light in cultured retinal epithelium. Curr Eye Res. 1984, 3 (1), 209-215.
[20]Yu-Rong Siao. Ginkgo Biloba extract recovers mouse vision-related functions and protects against retinal degeneration induced by LED light. School of Biomedical Sciences, Chung Shan Medical University, Master Thesis, 2014.
[21]Narimatsu T, Ozawa Y, Miyake S, Kubota S, Yuki K, Nagai N, Tsubota K. Biological effects of blocking blue and other visible light on the mouse retina. Clin Experiment Ophthalmol. 2014, 42 (6), 555-563.
[22]Sparrow JR, Nakanishi K, Parish CA. The lipofuscin fluorophore A2E mediates blue light induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci. 2000, 41(7), 1981-1989.
[23]Sparrow JR, Cai B. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci. 2001, 42(6), 1356-1362.
[24]Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, Nakanishi K. Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci. 2002, 43(4), 1222-1227.
[25]Rózanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Sarna T. Blue light-induced reactivity of retinal age pigment.In vitro generation of oxygen-reactive species. 1995, 270(32), 18825-18830.
[26]Busch EM, Gorgels TG, van Norren D. Tempora; sequence of changes in rat retina after UVA and blue light exposure. Vision Res.1999, 39(7), 1233-1247.
[27]Kolb H, Fernandez E, Nelson R. Melanopsin Ganglion Cells: A Bit of Fly in the Mammalian Eye. The Organization of the Retina and Visual System. 1995.
[28]Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 2006, 497 (3), 326-349.
[29]Münch M, Léon L, Crippa SV, Kawasaki A. Circadian and Wake-Dependent Effects on the Pupil Light Reflex in Response to Narrow-Bandwidth Light Pulses. Invest Ophthalmol Vis Sci. 2012, 53 (8), 4546-4555.
[30]Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Alburquerque-Béjar JJ, Nieto-López L, García-Ayuso D, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. Number and Distribution of Mouse Retinal Cone Photoreceptors: Differences between an Albino (Swiss) and a Pigmented (C57/BL6) Strain. PLoS One. 2014, 9 (7).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top