|
[1] Guillaume Colin de Verdière, "Introduction to GPGPU, a hardware and software background" , Comptes Rendus Mécanique, Volume 339, Is-sues 2–3, February–March 2011, Pages 78-89 [2] Zhiyi Yang, Yating Zhu, Yong Pu, “Parallel Image Processing Based on CUDA”, Computer Science and Software Engineering, vol.3, pp.198~201, 2008. [3] Prof. Dr. Volker Sperschneider , "RNA Secondary Structure Prediction" , January 2008. [4] Chang, D.-J, Kimmer, C, Ouyang, M, "Accelerating the Nussinov RNA folding algorithm with CUDA/GPU ", 2010 IEEE International Symposium on Signal Processing and Information Technology, Article number5711746, pp. 120-125. [5] MichałCzapiński, Stuart Barnes, “Tabu Search with two approaches to parallel flowshop evaluation on CUDA platform”, J. Parallel Distrib. Comput. Vol 71, pp.802-811, 2011. [6] Crespo, A.J.C , Dominguez, J.M, Valdez-Balderas, D, Rogers, B.D, Gomez-Gesteira, M, "Smoothed particle hydrodynamics on GPU computing", 2nd International Conference on Particle-Based Methods, PARTICLES 2011, pp. 922-929. [7] Rustico, E, Bilotta, G, Gallo, G, Hérault, A, Del Negro, C, "Smoothed particle hydrodynamics simulations on multi-GPU systems", Proceedings - 20th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, Article number6169576, pp. 384-391. [8] Liu, Yongchao, and Bertil Schmidt. "LightSpMV: Faster CSR-based sparse matrix-vector multiplication on CUDA-enabled GPUs." Application-specific Systems, Architectures and Processors (ASAP), 2015 IEEE 26th International Conference on. IEEE, 2015. [9] NVIDIA CUDA. (2012). CUDA Parallel Computing Platform[Online]. Available: http://www.nvidia.com/object/cuda_home_new.html [10] T. R. Halfhill, "Parallel processing with CUDA-NVIDA’s highperformance computing platform uses massive multithreading, " Microprocessor Rep., pp. 1–8, Jan. 2008. [11] NVIDIA. (2009). NVIDIA Cuda2.0 Programming Guide[Online]. Available: http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf. [12] NVIDIA CUDA. (2014). CUDA C Programming Guide[Online]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html [13] N. Bell, M. Garland, Implementing Sparse Matrix-Vector Multiplication on Throughput-oriented Processors, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, 2009 [14] A Parallel Loop Self-Scheduling on Extremely Heterogeneous PC Clusters Chao-Tung Yang and Shun-Chyi Chang High-Performance Computing Laboratory Department of Computer Science and Information Engineering [15] T. A. Davis, Y. Hu, The University of Florida Sparse Matrix Collection, ACM Transactions on Mathematical Software, vol. 38, no. 1, 2011 roceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, pp. 1085-1097, 2013
|