跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林友義
研究生(外文):You-Yi Lin
論文名稱:具有阻抗調節能力之高分子毛細管式油壓節流器的研發
論文名稱(外文):Development of Polymer Capillary Hydrostatic Bearing Restrictor with Capability of Impedance Regulation
指導教授:羅斯維
指導教授(外文):Sy-Wei Lo
口試委員:宋震國黃華志任志強
口試委員(外文):Sung, Cheng-KuoHuang,Hua-ChihRenn, Jyh-Chyang
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:142
中文關鍵詞:液靜壓軸承高分子節流器剛性流量反饋
外文關鍵詞:hydrostatic bearingpolymerrestrictorstiffnessflow feedback
相關次數:
  • 被引用被引用:1
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
摘要
液靜壓軸承的負載能力以及穩定性主要受到節流器的影響。傳統毛細管或孔口式的節流器只能提供固定阻抗,並不能在軸承負荷增加時,釋出較高的流量以穩定軸承的浮動高度(油膜厚度)。因此本論文以聚氨酯 (PU) 高分子材料來製作毛細管節流器。當軸承負荷改變時,流體的壓力變化會傳遞回節流器,毛細管因此而改變形狀尺寸,造成不同的阻抗以達到補償的效果。
實驗分為靜態與動態,並以可忽略變形的鋁合金製作相同結構的節流器,作為實驗的對照標準。靜態實驗測量節流器供應壓力、輸出壓力、流量、油膜厚度;動態實驗則給予步階力(方波)的負荷變動,負荷在低值與高值間以指定的頻率異動,測量以上所提之各項數據。
靜態實驗結果顯示:(1) 與鋁節流器相比,聚氨酯節流器的阻抗較不受油溫所影響; (2) 毛細管道的高彈性變形會形成出口減縮的噴嘴,至少使流量下降至鋁合金節流的一半以下,在低負荷區甚至可相差達十倍。聚氨酯的硬度越低,則流量和油膜厚度越低;(3) 聚氨酯的硬度下降時,在較低的負荷下便已開始產生明顯的流量補償,使軸承得到較佳之剛性;但較硬之聚氨酯則適合用於高供應油壓及高負荷區;(4) 增加供應油壓,會使得最大補償流量的發生點朝高負荷區移動;(5) 選擇適當的聚氨酯硬度和供應油壓,可在特定的負荷區域得到極高甚至無限大的靜態剛性。
動態實驗結果顯示聚氨酯節流器表現良好,然須注意下列情況:(1)高供油壓力下,較軟的聚氨酯其毛細管偶爾會因強力膠脫落而導至阻塞。且因流道變形過於劇烈,所得到的實驗數據非常不穩定;(2) 在流量補償的範圍內,補償流量越大則毛細管擴孔越趨於極限,油膜厚度達到穩定的時間也就越長;(3) 若負荷方波的高值超出聚氨酯的補償範圍,負荷變動時將有流量過分補償的突點出現,但油膜厚度的突點較不明顯。

Abstract
The load carrying capacity and stability of hydrostatic bearings are mainly influenced by restrictors. Traditional capillary tube or orifice restrictors can only provide fixed impedance and are unable to stabilize the flying height of bearings (oil film thickness) by releasing higher flows when loads on bearings increase. Therefore, this paper concerns the creation of a capillary tube restrictor using polyurethane (PU), a polymer material. When the load on the bearing changes, information on fluid pressure variation is sent back to the restrictor and the capillary tube will change its shape and size accordingly to generate different levels of impedance for compensation.
The experimentation was divided into the static and dynamic parts and another restrictor in the same structure was created using an aluminum alloy with negligible deformation as the control in the experimentation. The static experiment measured the supply pressure, output pressure, flow rates and oil film thickness in the two restrictors; whereas, the dynamic experiment measured load transactions between low and high levels at a fixed frequency by providing load variation by the step function (square wave). Measurement was thus carried out to obtain data of the aforementioned items.
The results of the static experiment showed the following. (1) Compared to the aluminum alloy restrictor, the impedance in the PU restrictor was less affected by the oil temperature. (2) The high elastic deformation of the capillary tube channel led to the formation of a nozzle with a reduced outlet and therefore the PU restrictor could reduce the flow to less than half of the flow achieved by the aluminum alloy restrictor and the difference between the two could be up to 10 times in the low-load region. When the PU hardness was lower, the flow and the oil film thickness were also lower. (3) When the PU hardness dropped and the load was lower, marked flow compensation began to occur, thus giving the bearing better stiffness. On the contrary, harder PU was more appropriate for the region with high oil supply pressure and high load. (4) Increase in the oil supply pressure caused the occurrence point of maximum compensated flow to move toward the high-load region. (5) The selection of appropriate PU hardness and oil supply pressure could enable extremely high or even infinitely high static stiffness in a specific load region.
The results of the dynamic experiment showed the PU restrictor performed well, but also indicated the following noteworthy instances. (1) Under high oil supply pressure, the capillary tube in the PU restrictor could become blocked by potential superglue fall-off. Moreover, overly severe deformation of the flow channel could make the obtained experimental data highly unstable. (2) Within the range of flow compensation, higher compensated flow could stretch outlet expansion in the capillary tube to its limit and hence lengthen the time for the oil film thickness to stabilize. (3) When the high level of the loading square wave exceeded the compensation range of the PU restrictor and as soon as the load changed, the salient point of overly flow compensation would appear, whereas the salient point of the oil film thickness was less noticeable.

目錄
摘要 i
目錄 vii
圖目錄 x
表目錄 xv
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-2-1關於國外對於固定式節流器之研究 2
1-2-2關於國外對於補償式節流器之研究 3
1-2-3關於國內對於節流器之研究 4
1-3研究動機與方法 8
第二章 液靜壓軸成特性介紹 10
2-1液靜壓軸承原理 10
2-2流體軸承原理區分 10
2-2液壓軸承供油系統分類 12
2-3節流器種類與特性 15
2-3-1伯努利定理 15
2-3-2連續法則 16
2-3-3油的黏度 17
2-3-4 節流器之重要性 20
2-3-5固定式非補償節流器 21
2-3-2壓力補償式節流器 25
第三章 聚氨酯毛細管節流器幾何設計與架構 30
3-1毛細管材質選用之液靜壓軸承設計. 30
3-2 單孔毛細管幾何設計與架構 32
3-3 雙孔毛細管幾何設計與架構 40
3-4 鋁雙孔毛細管幾何設計與架構 41
3-5 PU雙孔毛細管幾何設計與架構 46
3-6 PU毛細孔節流器快速模具灌注法 50
第四章 實驗設備 57
4-1液靜壓軸承實驗台架構 57
4-2液靜壓機台迴路 60
4-3感測設備介紹 65
4-4 LabVIEW圖控程式軟體 71
第五章 PU雙毛細管節流器靜態實驗分析 76
5-1 PU節流器在靜壓下油溫對毛細管節流器特性實驗分析結果 77
5-2 Shore A硬度在靜壓下之個別PU節流器特性實驗分析結果 80
5-2-1鋁節流器於各壓力下之特性圖 82
5-2-2市售聚氨酯PU(M)(Shore A90)節流器於各壓力下之特性圖 83
5-2-3灌注型聚安酯PU(Shore A90)流器於各壓力下之特性圖 85
5-2-3灌注型聚安酯PU(Shore A80)流器於各壓力下之特性圖 87
5-2-3灌注型聚安酯PU(Shore A70)流器於各壓力下之特性圖 88
5-3 相同供油壓力下之各材質特性實驗分析結果 89
5-3-1於各節流器於20bar供油壓力之負載與流量關係 90
5-3-2於各節流器於30bar供油壓力之負載與流量關係 92
5-3-3於各節流器於40bar供油壓力之負載與流量關係 94
5-3-4於各節流器於50bar供油壓力之負載與流量關係 96
第六章 PU雙毛細管節流器動態實驗分析 100
6-1 於20bar供油壓力下毛細管動態性質 100
6-2 於30bar供油壓力下毛細管動態性質 103
6-3 於40bar供油壓力下毛細管動態性質 107
6-4 於50bar供油壓力下毛細管動態性質 112
第七章結論與建議 117
7-1結論 117
7-2建議 118
參考文獻 117

參考文獻
[1]A. A. Raimondi and J. Boyd, “An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing” ,Journal of the American Society of Lubrication Engineering,Vol.13,pp.29-37,1957.
[2]Davies P. B. , “A general analysis of multi-recess hydrostatic journal earings” , roceedings of Institution of Mechanical Engineering,Part1, ol.184,No.43,p.827-836,1969.
[3]Stanley,B.M.,and Alfred,M.L., “The Effect of the Method of Compensation on Hydrostatic Bearing Stiffiness” ,Journal of Basic Engineering,p.179-187,1961.
[4]O’Donoghue, J. P., “Parallel orifice and capillary control for hydrostatic journal bearings.” Tribology 1972;5:81-82.
[5]S.C.Sharma,S.C.Jain,R.Sinhasan and R. Shalia, “Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybridflexible journal bearings” ,Tribology International ,Vol.28,p.531-539,1995.
[6]S.C.Sharma,R.Sinhasan,S.C.Jain,N.Singh and S. K. Singh, “Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries” , Tribology Transactions , Vol.41,p.375-381,1998.
[7]Mayer,J.E. and Shaw ,M.C., “Characteristics of Extermally Pressurized Bearing Having Variable External Flow Restrictors” ,ASEM Journal of Basic Engineering , Vol.85,p.291,1963.
[8]Moshin M. E. , “The use of controlled restrictors for compensating hydrostatic bearing” ,Third International Conference on Machine Tool Design Research,p.129-424,2007.
[9]DeGast J. G. P. , “A new type of controlled restrictor(M.D.R.) for double film hydrostatic bearings and its application to high-precision machine tools” ,Advance in Machine Tools Design and Research,p.273-298,1966.
[10]Rowe W. B. and O’Donoghue J. P. , “Diaphragm valves for controlling opposed pad bearing” ,Proceeding of the Mechanical Engineering Tribology Convention, Brighton , p.1-9,1970.
[11]Rowe W.B. , “Hydrostatic and hybrid bearing design” ,Butterworths pressed,1983.
[12]Moris,S.A. , “Passively and Actively Controlled Extermally Pressurized Oil-film Bearing” ,Trans. ASME,Ser. F,Vol 94,1972.
[13]Morsi S. A. , “Passively and active controlled externally pressurized oil-film bearings” , Transations of the ASME ,Vol.94,No.1,p.56-63,1971.
[14]Cusano C. , “Characteristics of externally pressurized journal bearing with membrane-type variable-flow restroctors as compensating elements” ,Inst Mechanical Engineering ,Vol.188,No.52,p.52-74,1974.
[15]Sukholutskii, Y.A.,“Closed-Loop Hydrostatic Slideways with Regulators” , Stanknii Instrument , Vol.46,pp15-18, 1975.
[16]Osumi T.,Mori H.,Ikeuchi K. , “Effects of stabilizer on initial response of self controlled externally pressurized bearings” ,Trans. JSLE;20:651-657,1985.
[17]Zaitsev, D. K. and Grudskaya, E. G., Dynamic Characteristics of a Bearing with Active Discharge Compensation , 1989.
[18]Wang, C. and Cusano, C., “Dynamic Characteristics of Externally Pressurized, Double-Pad, Circular Thrust Bearings with Membrane Restrictors,” Transactions of the ASME, Journal of Tribology, Vol. 113, 1991.
[19]Yoshimoto S., Kikuchi K., “Step response characteristics of hydrostatic journal bearings with self-controlled restrictor employing floating disk.” Trans. Int., 1999;121(4):315-320.
[20]Robert Schoenfold, “Regulator for adjusting the fluid flow in a hydrostatic or aerostatic device” ,US Patent number2676491B1,2001.
[21]N.Singh,S.C.Sharma,S.C.Jain and S.S.Reddy, “Performance of membrane compensated multirecess hydrostatic hybrid flexible journal bearing system considering various recess shapes, “Tribology International,Vol.37,p.11-24,2004.
[22]李棋富,2004,閉式靜壓滑軌之特性分析與最佳化,國立中原大學機械工程 學系碩士論文。
[23]吳奎漢,2006,閉式靜壓滑軌使用薄膜節流器之動態特性分析,國立中原大 學機械工程學系碩士論文。
[24]金鼎鈞,2008,封閉式圓形靜壓平面支承使用不同形式節流器之工作台動態 特性分析,國立中原大學機械工程學系碩士論文。
[25]盧佳崴,2010,新型主動式補償液靜壓軸承設計及實驗驗證,國立清華大學 動力機械工程學系碩士論文。
[26]林德勛,2011,具薄膜節流器之液靜壓軸承研發與測試,國立彰化師範大學 機電工程學系碩士論文。
[27]盧文暉,2013,具薄膜節流器之圓形軸墊性能分析與測試,國立彰化師範大 學機電工程學系碩士論文。
[28]謝豐仰,“結合薄膜與泡棉之新型氣靜壓軸承用節流器”,國立雲林科技大學,碩士論文,2013
[29]郭雅華,“結合矽膠節流管之可撓式氣靜壓軸承的數值模擬分析”,國立雲林科技大學,碩士論文,2014
[30]盧聖涵,“組合金屬與高分子體之氣靜壓止推軸承的靜態特性研究”,國立雲林科技大學,碩士論文,2014
[31]李昀叡,“液靜壓軸承之滑閥式壓力反饋節流器研發”,國立雲林科技大學,碩士論文,2016
[32]詹泓昌,“結構與材質對高分子氣靜壓止推軸承靜動態特性之影響”,國立雲林科技大學,碩士論文,2016
[33]B.J. Hamrockand McGraw-Hill, “Fundamentals of Fluid Film Lubrication”, ISBN:0-07-025956-9,1994.
[34]黃華志, “工具機液體靜壓軸承技術”, 中興大學工具機系統設計分析課程, 2014.
[35]林子寬, “氣油壓概論,” 華興書局, 1988.07.
[36]“國光牌潤滑油只產品說明書,”台灣中油股份有限公司潤滑油事業部, 2016.
[37]Misumi優力膠產品規格
[38]林清源等人, “超精密加工機技術介紹,”中華民國自動化科技學會期刊, 2007.
[39]陳俊宇、劉大銘, “RT矽膠模具製作與成品精度之探討” ,大葉大學機械工程研究所碩士論文, 2007.
[40]震宇企業股份有限公司.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊