跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠筑
研究生(外文):Chen,Guan-Zhu
論文名稱:不同界面活性劑對製備生物活性玻璃特性影響之研究
論文名稱(外文):Effect of Different Surfactant Additions on the Characteristics of Bioactive Glass
指導教授:陳錦毅陳錦毅引用關係林中魁
指導教授(外文):Chen,Chin-YiLin,Chung-Kwei
口試委員:陳錦毅林中魁簡儀欣
口試委員(外文):Chen,Chin-YiLin,Chung-KweiChien,Yi‐Hsin
口試日期:2019-07-01
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:57
中文關鍵詞:生物活性玻璃生物相容性兩性界面活性劑親油性界面活性劑親水性界面活性劑
外文關鍵詞:bioactiveglassbiocompatibilityampholytic surfactanthydrophilic surfactantlipophilic surfactant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今的社會,隨著醫療科技的不斷發展,近幾年興起的生物活性玻璃也逐漸受到重。而將生物活性玻璃進行改質,在合成過程中加入不同性質的界面活性劑做為造孔劑使用,可增加生物活性玻璃之比表面積,藉以增加生物活性玻璃與生物體液接觸面積,加速氫氧基磷灰石層生成。藉此增進生物活性玻璃的礦化能力幫助骨質生成及與骨周圍組織生長,以提高軟組織與骨質的癒合能力,為本研究的主要動機;因兩性界面活性劑P123的添加,可有效助於生物活性玻璃的表面礦化能力及擁有接近骨生成鈣磷比理想值1.67,且可加速MG-63成骨細胞的生長,達到快速傷口癒合及高生物相容性的效果。
In today’s society, with the continuous development of medical technology, bioactive glass that has emerged in recent years has gradually attracted concern in medical circles. In the process of synthesis, the modification of bioactive glass by adding surfactants with different properties surfactant as pore-forming agents, can increase the specific surface area of bioactive glass and improve the contact area between bioactive glass and body fluid, thereby accelerating the formation of hydroxyapatite layer. The main motivation of this study is to enhance mineralization ability of bioactive glass to help bone formation and tissue growth around the bone, thereby improving the healing ability of soft tissue and bone. Due to the addition of hydrophilic surfactant P123, it can effectively promote the surface mineralization ability of bioactive glass and have an ideal value of 1.67 for bone-forming calcium and phosphorus, and accelerate the growth of MG-63 osteoblasts for rapid wound healing. And high biocompatibility effects.
誌謝
摘要
Abstract
目錄
圖表目錄
第一章 緒論
1.1 前言
1.2 研究動機
第二章 文獻回顧
2.1生物活性玻璃介紹
2.1.1 生物活性玻璃發展史
2.1.2 氫氧基磷灰石
2.2 生物活性玻璃製備法
2.2.1 溶膠凝膠法
2.3 界面活性劑
2.3.1 兩性界面活性劑
2.3.2 親水性界面活性劑
2.3.3 親油性界面活性劑
2.4 靜電噴霧法 (Electrospray)
第三章 實驗方法與步驟
3.1 實驗流程
3.2 生物活性玻璃製程
3.2.1 生物活性玻璃粉末製備
3.2.2 界面活性劑之生物活性玻璃粉末製備
3.2.3 靜電噴霧生物活性玻璃於發泡鈦基板上
3.2.4 靜電噴霧P123於發泡鈦基板上
3.3 生物活性玻璃分析測試
3.3.1 掃描式電子顯微鏡 (SEM)
3.3.2 能量散射光譜儀 (EDS)
3.3.3 X光繞射分析儀(XRD)
3.3.4 比表面積分析 (BET)
3.3.5 傅立葉轉換紅外線光譜儀 (FTIR)
3.3.6 細胞存活率分析 (CCK-8 assay)
第四章 結果與討論
4.1 生物活性玻粉體之特性分析
4.1.1 生物活性玻璃樣品BG粉體之SEM分析
4.1.2 生物活性玻璃樣品Span 85粉末之SEM分析
4.1.3 生物活性玻璃樣品PEG粉末之SEM分析
4.1.4 生物活性玻璃樣品P123粉末之SEM分析
4.1.5 生物活性玻璃樣品之EDS分析
4.1.6 生物活性玻璃樣品粉末之FTIR分析
4.1.7 生物活性玻璃樣品浸泡SBF溶液後之XRD分析
4.1.8 生物活性玻璃樣品之BET分析
4.1.9 生物活性玻璃粉樣品之重量百分率圖
4.1.10 生物活性玻璃樣品之細胞貼附測試 (CCK-8 assay)
4.2 靜電噴塗於發泡鈦基材之表面分析
4.2.1 空白鈦基材之SEM圖
4.2.2 BG – Ti之SEM圖分析
4.2.3 P123 – Ti之SEM圖分析
4.2.4 生物活性玻璃靜電噴霧於鈦基材上之FTIR分析
4.2.5 生物活性玻璃靜電噴霧於鈦基材上之XRD分析
4.2.6 鈦基材之細胞貼附測試(CCK-8 assay)
第五章 結論
第六章 未來展望
參考文獻
1. Hench, L.L., The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.

2. Li, R., A. Clark, and L. Hench, An investigation of bioactive glass powders by sol‐gel processing. Journal of Applied Biomaterials, 1991. 2(4): p. 231-239.

3. Peltola, T., et al., Calcium phosphate formation on porous sol‐gel‐derived SiO2 and CaO‐P2O5‐SiO2 substrates in vitro. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1999. 44(1): p. 12-21.

4. Yan, X., et al., Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angewandte Chemie International Edition, 2004. 43(44): p. 5980-5984.
Velez., J. Ceramic Biomaterials. 2016, April 16.

5. Thamma, U., et al., Influence of nanoporosity on the nature of hydroxyapatite formed on bioactive calcium silicate model glass. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018.

6. Shashvatt, U., H. Aris, and L. Blaney, Evaluation of Animal Manure Composition for Protection of Sensitive Water Supplies Through Nutrient Recovery Processes, in Chemistry and Water. 2017, Elsevier. p. 469-509.

7. Szcześ, A., L. Hołysz, and E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Advances in colloid and interface science, 2017. 249: p. 321-330.

8. Balamurugan, A., et al., Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Materials Letters, 2006. 60(29-30): p. 3752-3757.

9. Hamadouche, M., et al., Long‐term in vivo bioactivity and degradability of bulk sol‐gel bioactive glasses. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 54(4): p. 560-566.

10. Lin, S., et al., Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. Journal of Materials Chemistry, 2009. 19(9): p. 1276-1282.

11. Sepulveda, P., J.R. Jones, and L.L. Hench, Characterization of melt‐derived 45S5 and sol‐gel–derived 58S bioactive glasses. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 58(6): p. 734-740.

12. Wanka, G., H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules, 1994. 27(15): p. 4145-4159.

13. Wan, Y. and D. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chemical reviews, 2007. 107(7): p. 2821-2860.

14. López-Noriega, A., et al., Ordered mesoporous bioactive glasses for bone tissue regeneration. Chemistry of Materials, 2006. 18(13): p. 3137-3144.

15. Wu, C. and J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2012. 2(3): p. 292-306.


16. Yun, H.s., et al., Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2008. 87(2): p. 374-380.

17. Yun, H.-s., S.-e. Kim, and Y.-t. Hyun, Preparation of bioactive glass ceramic beads with hierarchical pore structure using polymer self-assembly technique. Materials Chemistry and Physics, 2009. 115(2-3): p. 670-676.

18. Xia, W. and J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. Journal of Controlled Release, 2006. 110(3): p. 522-530.

19. Xia, W., D. Zhang, and J. Chang, Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology, 2007. 18(13): p. 135601.

20. Kahovec, J.a., R. Fox, and K. Hatada, Nomenclature of regular single-strand organic polymers (IUPAC Recommendations 2002). Pure and Applied Chemistry, 2002. 74(10): p. 1921-1956.

21. Lei, B., et al., Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Materials Letters, 2009. 63(20): p. 1719-1721.

22. Catauro, M., et al., Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol–gel technique. Materials Science and Engineering: C, 2015. 48: p. 548-555.

23. Serra, T., et al., Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Materials Science and Engineering: C, 2014. 38: p. 55-62.
24. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
Sinha, V., et al., Chitosan microspheres as a potential carrier for drugs. International journal of pharmaceutics, 2004. 274(1-2): p. 1-33.

25. Yoshioka, T., B. Sternberg, and A.T. Florence, Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). International journal of pharmaceutics, 1994. 105(1): p. 1-6.

26. Alsarra, I.A., et al., Proniosomes as a drug carrier for transdermal delivery of ketorolac. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 59(3): p. 485-490.

27. 林宜潔, 吸住葉面不浪費,靜電噴霧器省農藥效率高,農傳媒。

28. Hirotaka Maeda, Tatsuya Okuyama, Emile H. Ishida, Toshihiro Kasuga,
Preparation of porous spheres containing wollastonite by an electrospray method,Materials Letters,Volume 95,213,Pages 107-109.

29. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.

30. Lopez-Esteban, S., et al., Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 2003. 23(15): p. 2921-2930.

31. Clupper, D. and L. Hench, Crystallization kinetics of tape cast bioactive glass 45S5. Journal of non-crystalline solids, 2003. 318(1-2): p. 43-48.

32 Gough, J.E., J.R. Jones, and L.L. Hench, Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 2004. 25(11): p. 2039-2046.

33 Anusha Thampi VV, S.B., Bioactive Glasses for Orthopedic and Orthodontic Implant Applications. Ely J Mat Sci Tech 2017: p. 1(1): 101.

34. Garg, T., et al., Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis. Current pharmaceutical design, 2015. 21(22): p. 3076-3089.

35. Guerrero, M., F. Bertrand, and D. Rochefort, Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules. Chemical engineering science, 2011. 66(21): p. 5313-5320.

36. Leroux, J.-C. and A.-C. Couffin-Hoarau, Composition having gelling properties for the prolonged delivery of bioactive substances. 2010, Google Patents.

37. Manosroi, A., et al., Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds. Pharmaceutical biology, 2012. 50(2): p. 208-224.

38. Luz, G.M. and J.F. Mano, Nanoengineering of bioactive glasses: hollow and dense nanospheres. Journal of nanoparticle research, 2013. 15(2): p. 1457.

39. Xia, W., & Chang, J. (2006). Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. Journal of ControlledRelease,110(3),522–530.doi:10.1016/j.jconrel.2005.11.002.

40. Xia, W., Zhang, D., & Chang, J. (2007).Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology, 18(13), 135601. doi:10.1088/0957-4484/18/13/135601.

41. Roriz, V.M., et al., Efficacy of a bioactive glass–ceramic (Biosilicate®) in the maintenance of alveolar ridges and in osseointegration of titanium implants. Clinical Oral Implants Research, 2010. 21(2): p. 148-155.

42. Vrouwenvelder, W., C. Groot, and K. De Groot, Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. Journal of biomedical materials research, 1993. 27(4): p. 465-475.

43. Gomez-Vega, J., et al., Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials, 2000. 21(2): p. 105-111.

44. Ning, C. and Y. Zhou, On the microstructure of biocomposites sintered from Ti, HA and bioactive glass. Biomaterials, 2004. 25(17): p. 3379-3387.

45. Bloyer, D., et al., Fabrication and characterization of a bioactive glass coating on titanium implant alloys. Acta materialia, 1999. 47(15-16): p. 4221-4224.

46. Zhang, Y., et al., Mesoporous bioactive glass nanolayer‐modified zirconia coatings on Ti‐6Al‐4V with improved in vitro bioactivity. International Journal of Applied Glass Science, 2016. 7(2): p. 216-228.

47. Ye, X., et al., Mesoporous bioactive glass functionalized 3D Ti-6Al-4V scaffolds with improved surface bioactivity. Materials, 2017. 10(11): p. 1244.

48. Shruti, S., et al., Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy. Applied Surface Science, 2016. 378: p. 216-223.

49. Covarrubias, C., et al., Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Applied Surface Science, 2016. 363: p. 286-295.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top