|
1. Hench, L.L., The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.
2. Li, R., A. Clark, and L. Hench, An investigation of bioactive glass powders by sol‐gel processing. Journal of Applied Biomaterials, 1991. 2(4): p. 231-239.
3. Peltola, T., et al., Calcium phosphate formation on porous sol‐gel‐derived SiO2 and CaO‐P2O5‐SiO2 substrates in vitro. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1999. 44(1): p. 12-21.
4. Yan, X., et al., Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angewandte Chemie International Edition, 2004. 43(44): p. 5980-5984. Velez., J. Ceramic Biomaterials. 2016, April 16.
5. Thamma, U., et al., Influence of nanoporosity on the nature of hydroxyapatite formed on bioactive calcium silicate model glass. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018.
6. Shashvatt, U., H. Aris, and L. Blaney, Evaluation of Animal Manure Composition for Protection of Sensitive Water Supplies Through Nutrient Recovery Processes, in Chemistry and Water. 2017, Elsevier. p. 469-509.
7. Szcześ, A., L. Hołysz, and E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Advances in colloid and interface science, 2017. 249: p. 321-330.
8. Balamurugan, A., et al., Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Materials Letters, 2006. 60(29-30): p. 3752-3757.
9. Hamadouche, M., et al., Long‐term in vivo bioactivity and degradability of bulk sol‐gel bioactive glasses. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 54(4): p. 560-566.
10. Lin, S., et al., Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. Journal of Materials Chemistry, 2009. 19(9): p. 1276-1282.
11. Sepulveda, P., J.R. Jones, and L.L. Hench, Characterization of melt‐derived 45S5 and sol‐gel–derived 58S bioactive glasses. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 58(6): p. 734-740.
12. Wanka, G., H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules, 1994. 27(15): p. 4145-4159.
13. Wan, Y. and D. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chemical reviews, 2007. 107(7): p. 2821-2860.
14. López-Noriega, A., et al., Ordered mesoporous bioactive glasses for bone tissue regeneration. Chemistry of Materials, 2006. 18(13): p. 3137-3144.
15. Wu, C. and J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2012. 2(3): p. 292-306.
16. Yun, H.s., et al., Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2008. 87(2): p. 374-380.
17. Yun, H.-s., S.-e. Kim, and Y.-t. Hyun, Preparation of bioactive glass ceramic beads with hierarchical pore structure using polymer self-assembly technique. Materials Chemistry and Physics, 2009. 115(2-3): p. 670-676.
18. Xia, W. and J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. Journal of Controlled Release, 2006. 110(3): p. 522-530.
19. Xia, W., D. Zhang, and J. Chang, Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology, 2007. 18(13): p. 135601.
20. Kahovec, J.a., R. Fox, and K. Hatada, Nomenclature of regular single-strand organic polymers (IUPAC Recommendations 2002). Pure and Applied Chemistry, 2002. 74(10): p. 1921-1956.
21. Lei, B., et al., Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres. Materials Letters, 2009. 63(20): p. 1719-1721.
22. Catauro, M., et al., Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol–gel technique. Materials Science and Engineering: C, 2015. 48: p. 548-555.
23. Serra, T., et al., Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Materials Science and Engineering: C, 2014. 38: p. 55-62. 24. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer. Sinha, V., et al., Chitosan microspheres as a potential carrier for drugs. International journal of pharmaceutics, 2004. 274(1-2): p. 1-33.
25. Yoshioka, T., B. Sternberg, and A.T. Florence, Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). International journal of pharmaceutics, 1994. 105(1): p. 1-6.
26. Alsarra, I.A., et al., Proniosomes as a drug carrier for transdermal delivery of ketorolac. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 59(3): p. 485-490.
27. 林宜潔, 吸住葉面不浪費,靜電噴霧器省農藥效率高,農傳媒。
28. Hirotaka Maeda, Tatsuya Okuyama, Emile H. Ishida, Toshihiro Kasuga, Preparation of porous spheres containing wollastonite by an electrospray method,Materials Letters,Volume 95,213,Pages 107-109.
29. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
30. Lopez-Esteban, S., et al., Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 2003. 23(15): p. 2921-2930.
31. Clupper, D. and L. Hench, Crystallization kinetics of tape cast bioactive glass 45S5. Journal of non-crystalline solids, 2003. 318(1-2): p. 43-48.
32 Gough, J.E., J.R. Jones, and L.L. Hench, Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials, 2004. 25(11): p. 2039-2046.
33 Anusha Thampi VV, S.B., Bioactive Glasses for Orthopedic and Orthodontic Implant Applications. Ely J Mat Sci Tech 2017: p. 1(1): 101.
34. Garg, T., et al., Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis. Current pharmaceutical design, 2015. 21(22): p. 3076-3089.
35. Guerrero, M., F. Bertrand, and D. Rochefort, Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules. Chemical engineering science, 2011. 66(21): p. 5313-5320.
36. Leroux, J.-C. and A.-C. Couffin-Hoarau, Composition having gelling properties for the prolonged delivery of bioactive substances. 2010, Google Patents.
37. Manosroi, A., et al., Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds. Pharmaceutical biology, 2012. 50(2): p. 208-224.
38. Luz, G.M. and J.F. Mano, Nanoengineering of bioactive glasses: hollow and dense nanospheres. Journal of nanoparticle research, 2013. 15(2): p. 1457.
39. Xia, W., & Chang, J. (2006). Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. Journal of ControlledRelease,110(3),522–530.doi:10.1016/j.jconrel.2005.11.002.
40. Xia, W., Zhang, D., & Chang, J. (2007).Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres. Nanotechnology, 18(13), 135601. doi:10.1088/0957-4484/18/13/135601.
41. Roriz, V.M., et al., Efficacy of a bioactive glass–ceramic (Biosilicate®) in the maintenance of alveolar ridges and in osseointegration of titanium implants. Clinical Oral Implants Research, 2010. 21(2): p. 148-155.
42. Vrouwenvelder, W., C. Groot, and K. De Groot, Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. Journal of biomedical materials research, 1993. 27(4): p. 465-475.
43. Gomez-Vega, J., et al., Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials, 2000. 21(2): p. 105-111.
44. Ning, C. and Y. Zhou, On the microstructure of biocomposites sintered from Ti, HA and bioactive glass. Biomaterials, 2004. 25(17): p. 3379-3387.
45. Bloyer, D., et al., Fabrication and characterization of a bioactive glass coating on titanium implant alloys. Acta materialia, 1999. 47(15-16): p. 4221-4224.
46. Zhang, Y., et al., Mesoporous bioactive glass nanolayer‐modified zirconia coatings on Ti‐6Al‐4V with improved in vitro bioactivity. International Journal of Applied Glass Science, 2016. 7(2): p. 216-228.
47. Ye, X., et al., Mesoporous bioactive glass functionalized 3D Ti-6Al-4V scaffolds with improved surface bioactivity. Materials, 2017. 10(11): p. 1244.
48. Shruti, S., et al., Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy. Applied Surface Science, 2016. 378: p. 216-223.
49. Covarrubias, C., et al., Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Applied Surface Science, 2016. 363: p. 286-295.
|