跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周經偉
研究生(外文):Ching-Wei Chou
論文名稱:幾丁聚醣/奈米二氧化矽複合薄膜對重金屬離子之吸附性質探討
論文名稱(外文):Adsorption of Heavy Metal Ions on Chitosan/Silica Nanocomposite Membranes
指導教授:林松華賴森茂賴森茂引用關係
指導教授(外文):Sung-Hwa LinSun-Mou Lai
口試委員:盧信沖林松華賴森茂邱求三
口試委員(外文):Hsin-Chun LuSung-Hwa LinSun-Mou LaiChyow-San Chiou
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:263
中文關鍵詞:幾丁聚醣/二氧化矽奈米複合材料吸附鐵離子銅離子鉻離子恆溫吸附模式動力學吸附模式
外文關鍵詞:chitosan/silica nanocompositeadsorptioniron ionscopper ionschromium ionsisotherm modelskinetic models
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1021
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討chitosan/silica奈米複合材料對金屬離子的吸附性質。先利用溶膠-凝膠法 (Sol-gel method)將四乙基矽氧烷 (TEOS),經水解縮合反應,形成200 nm二氧化矽粒子 (Silica),再使用磺酸化聚苯乙烯馬來酸共聚物 (PSSA_MA)作為改質劑,並分別與胺基丙基三乙氧基矽烷 (APTES)及3-縮水甘油丙基三甲氧矽烷(GPTMS)之兩種不同偶合劑 (Coupling agent)接枝,以對二氧化矽粒子做表面改質。最後將經表面改質silica,摻混入幾丁聚醣溶液,製備出複合薄膜。
研究中藉由製備出的silica、modified silica、及chitosan/silica複合薄膜當作吸附劑,進行了鐵離子、銅離子及鉻離子的吸附性質的討論。在批次的吸附實驗中,進行各種影響因素的討論,包含溶液的pH值、初始濃度的條件及接觸時間。根據溶液pH值的討論中,對於鐵離子的最佳操作條件pH為2、而銅離子及鉻離子為5。吸附結果顯示出,藉由PSSA_MA改質吸附劑能有效提升金屬離子的吸附效果。在恆溫吸附模式分析中發現,整體的吸附數據均符合Langmuir model。而動力學模式分析中,也符合pseudo second order model,這表示研究中所選用的吸附劑對於金屬離子之吸附機制均屬於單層化學吸附。

The main purpose of this study is to discuss adsorption of heavy metal ions on chitosan/silica nanocomposite membranes. The 200 nm silica particles were prepared by sol-gel method of tetraethyl orthosilicate (TEOS) through the hydrolysis and condensation reaction. Silica was first modified using silane treated polystyrene-sulfonic acid-g-maleic acid (PSSA_MA) with two different coupling agents including 3-aminopropyl triethoxysilane (APTES) and 3-glycidoxypropyl trimethoxysilane (GPTMS). Modified silica solution was added to chitosan aqueous solution, and the mixture solution was fabricated to hybrid membranes.
The adsorption of iron (III), copper (II) and chromium (III) ions onto silica, modified silica and chitosan/silica composite membranes has been investigated. The sorption experiments were carried out in batch mode to optimize various parameters viz., initial concentration, contact time, and pH that influence the sorption. According to the effect of pH results discussed, pH at 2 was selected as the optimum pH for iron ion adsorption, and pH at 5 for copper and chromium ions adsorption. It was shown that PSSA_MA grafted on silica could enhance the removal effect of metal ion. The adsorption isotherm data obey the Langmuir model. Kinetics experimental values did fit pretty well with the pseudo second order model in all investigated cases, which indicate that the adsorption behaviors are a monolayer chemical adsorption.

第一章、緒論.........................................................................................................1
第二章、文獻回顧.................................................................................................3
2-1. 廢水處理及吸附....................................................................................3
2-2. 二氧化矽................................................................................................6
2-3. 幾丁質與幾丁聚醣................................................................................7
2-4. 吸附理論................................................................................................8
2-5. 等溫吸附模式(Isotherm adsorption model) .......................................10
2-6. 動力學吸附模式(Adsorption kinetic model)......................................13
2-7. 二氧化矽於吸附上的應用..................................................................17
2-8. 幾丁聚醣於吸附上的應用..................................................................22
第三章、實驗.......................................................................................................29
3-1. 實驗藥品..............................................................................................29
3-2. 實驗儀器..............................................................................................33
3-3 實驗架構及流程...................................................................................35
第四章、結果與討論...........................................................................................47
4-1. 吸附劑性質分析..................................................................................47
4-2. 吸附溶液pH 值對吸附量的影響(Effect of pH value on adsorption) ...................................................................................................56
4-3. 金屬離子溶液初始濃度對吸附量的影響(Effect of initial concentration on adsorption) .......................................................................66
4-4. 吸附劑接觸時間對吸附量的影響(Effect of contact time on
adsorption) ...................................................................................................86
第五章、結論.....................................................................................................109
參考文獻...........................................................................................................111
Appendix A.......................................................................................................122
Appendix B........................................................................................................184
Appendix C........................................................................................................224
自述...................................................................................................................263
著作發表...........................................................................................................263

Amany, E. S., Ahmed, E. N., Azza, K. A., Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, J. Hazard. Mater., 48, 216-228, 2007.
Baker, R. W., membrane technology and applications, Menlo Park, California, 2000.
Berli, C. L. A., Piaggio, M. V., Deiber, J. A., Modeling the zeta potential of silica capillaries in relation to the background electrolyte composition, Electrophorsis, 24, 1587-1595, 2003.
Bernabe, L., Rivas, M. J., Eduardo, D. P., Preparation and adsorption properties of the chelating resins containing carboxylic, sulfonic, and imidazole groups, j. appl. polym. sci., 89, 2852-2856. 2003.
Biskup, B., Subotic, B., Kinetic analysis of the exchange processes between sodium ions from zeolite A and cadmium, copper and nickel ions from solutions, Sep. Purif. Technol., 37, 17-31, 2004.
Brink, C. J., Scherer, G. W., Sol-Gel Science, Academic Press, 1990.
Bula, K., Jesionowski, T., Krysztafkiewicz, A., Janik, J., The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters, Colloid Polym. Sci., 285, 1267-1273, 2007.
Burke, A., Yilmaz, E., Hasirci, N., Yilmaz, O., Iron(III) Ion Removal from Solution Through Adsorption on Chitosan, J. Appl. Polym. Sci., 84, 1185-1192, 2002.
Cadotte, J. E., Interfacially synthesized reverse osmosis membrane, US Patent, 4, 277-344, 1981.
Catherine, F. B., Zacaria, R., Kadirvelu, K., Modeling the adsorption of metal ions (Cu2+ , Ni2+ , Pb2+) onto ACCs using surface complexation models, Appl. Surf. Sci., 196, 356-365, 2002.
Chang, K. L. B., Tsai, G., Lee, J., Fu, W. R., Heterogeneous N-deacetylation of Chitin in Alkaline solution, Carbohydr. Res., 303, 327-332, 1997.
Chen, A. H., Liu, S. C., Chen, C. Y., Chen, C. Y., Comparative adsorption of Cu (II), Zn (II), and Pb (II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater., 154, 184-191, 2008.
Chiron, N., Guilet, R., Deydier, E., Adsorption of Cu (II) and Pb (II) onto a grafted silica: isotherms and kinetic models, Water Res., 37, 3079-3086, 2003.
Degs, Y. S. A., Barghouthi, M. I. E., Issa, A. A., Khraisheh, M. A., Walker, G. M., Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies, Water Res., 40, 2645-2658, 2006.
Du, W. L., Niu, S. S., Xu, Z. R., Xu, Y. L., Preparation, characterization, and adsorption properties of chitosan microspheres crosslinked by formaldehyde for copper(II) from aqueous solution, J. Appl. Polym. Sci., 111, 2881-2885, 2009.
Fan, H. T., Su, Z. J., Fan, X. L., Guo, M. M., Wang. J., Gao, S., Sun, T., Sol–gel derived organic–inorganic hybrid sorbent for removal of Pb2+, Cd2+ and Cu2+ from aqueous solution, J. Sol-Gel Sci. Technol., 64, 418-426, 2012.
Freundlich, H. M. F., Uber die adsorption in lasungen, Z. Phys. Chem., 57, 385-470, 1906.
Gad, Y. H., Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment, Radiat. Phys. Chem., 77, 1101-1107, 2008.
Ghaee, A., Niassar, M. S., Barzin, J., Matsuura, T., Effects of chitosan membrane morphology on copper ion adsorption, Chem. Eng. J., 165, 46-55 2010.
Ghaee, A., Niassar, M. S., Barzin, J., Zarghan, A., Adsorption of copper and nickel ions on macroporous chitosan membrane: Equilibrium study, Appl. Surf. Sci., 258, 7732-7743, 2012.
Guibal, E., Interactions of metal ions with chitosan-based sorbents: a review”, Sep. Purif. Technol., 38, 43-74, 2004.
Guo, M., Liu, B., Guan, S., Liu, C., Qin, H., Jiang, Z., Novel poly(arylene ether ketone)s containing sulfonic/carboxylic groups: synthesis and properties, J. Membr. Sci., 362, 38-46, 2010.
Halsey, G. D., The role of surface heterogeneity in adsorption, Adv. Catal., 4, 259-269, 1952.
Hilal, N., Al-Zoubi, H., Darwish, N. A., Mohammad, A. W., Characterisation of nanofiltration membranes using atomic force microscopy, Desalination, 177, 187-199, 2005.
Ho, Y. S., Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics., 59, 171-177, 2004.
Ho, Y. S., Isotherms for the sorption of lead onto peat: comparison of linear and non-linear methods, Pol. J. Environ. Stud., 15, 81-86, 2006.
Ho, Y. S., McKay, G., Sorption of dye from aqueous solution by peat, Biochem. Eng. J., 70, 115-124, 1998.
Ho, Y. S., McKay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Wat. Res., 34, 735-742, 2000.
Idris, S. A., Alotaibi, K. M., Peshkur, T. A., Anderson, P., Morris, M., Gibson, L. T., Adsorption kinetic study: Effect of adsorbent pore size distribution on the rate of Cr (VI) uptake, Microporous Mesoporous Mater., 165, 99-105, 2013.
Innocenzi, D., Brusatin, G., Competitive polymerization between organic and inorganic networks in hybrid materials, Chem. Mater., 12, 3726-3732, 2000.
Isin, D., Kayaman-Apohan, N., Gungor, A., Preparation and characterization of UV-curable epoxy/silica nanocomposite coatings, Prog. Org. Coat., 65, 477-483, 2009.
Jin, L., Bai, R. B., Mechanisms of lead adsorption on chitosan/PVA hydrogel beads, Langmuir, 18, 9765-9770, 2002.
Jos´e, A. A. S., Claudio, A., Calorimetric investigation of metal ion adsorption on 3-glycidoxypropyltrimethylsiloxane + propane-1,3-diamine immobilized on silica gel, Thermochim. Acta, 42, 777-83, 2005.
Juang, R. S., Chen, M. L., Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins, Ind. Eng. Chem. Res., 36, 813-820, 1997.
Kapoor, A., Viraraghavan, T., Fungal biosorption — an alternative treatmentoption for heavy metal bearing wastewaters: a review, Bioresour. Technol., 53, 195-206, 1995.
Kim, J. W., Kim, L. U., Kim, C. K., Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites, Biomacromolecules., 8, 215-222, 2007.
Knorr, D, Functional Properties of Chitin and Chitosan, J. Food. Sci., 47, 593-595, 1982.
Lagergren, S., About the theory of so-called adsorption of soluble substances, Kungliga svenska vetenskapsakademiens handlingar, 24, 1-39, 1898.
Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403, 1918.
Lason, R. E., Cadotte, J. E., Peterson, R. J., The FT-30 seawater reverse osmosis membrane- element test results, Desalination, 38, 473-483, 1981.
Li, N., Bai, R. B., Liu, C. K., Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization, Langmuir, 21, 11780-11787, 2005.
Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B., Lead adsorption on carbon nanotubes, Chem. Phys. Lett., 357, 263-266, 2002.
Li, Y., Qiu, T., Xu, X., Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions, Eur. Polym. J., 49, 1487-1494, 2013.
Lide, D. R., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 87th ed, CRC Press, Inc., Boca Raton, FL, 2006.
Lin, L. C., Thirumavalavan, M., Wang, Y. T., Lee, J. F., Surface area and pore size tailoring of mesoporous silica materials by different hydrothermal treatments and adsorption of heavy metal ions, Colloids Surf. A, 369, 223-231, 2010.
Liu, X., Cheng, Z., Ma, W., Removal of copper by modified chitosan adsorptive membrane, Front. Chem. Eng., 3, 102-106, 2009.
Liu, Y., Liu, Z. C., Gao, J., Dai, J. D., Han, J., Wang, Y., Xie, J. M., Yan, Y. S., Selective adsorption behavior of Pb (II) by mesoporous silica SBA-15-supported Pb (II)-imprinted polymer based on surface molecularly imprinting technique, J. Hazard. Mater., 186, 197-205, 2011.
Lu, N., Li, J., Wang, X., Wang, T., Wu, Y., Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration, Plasma Chem Plasma Process, 32, 109-121, 2012.
Madihally, S. V., Matthew, H. W., Porous chitosan scaffolds for tissue engineering, Biomaterial, 20, 1133-1142, 1999.
Manu, V., Haresh, M. M., Hari, C. B., Raksh, V. J., Adsorption of Cu2+ on amino functionalized silica gel with different loading, Ind. Eng. Chem. Res., 48, 8954-8960, 2009.
Modrejewska, Z., Kaminski, W., Separation of Cr(Ⅵ) on chitosan membrane, Ind. Eng. Chem. Res., 38, 4946-4950, 1999.
Mohsen, N. M., Montazeri, P., Modarress, H., Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes, Desalination, 217, 276-281, 2007.
Muirhead, A., Beardsley, S., Aboudiwan, J., Performance of the 12,000m3/day sea water reverse osmosis desalination plant at Jeddah, Saudi Arabia January 1979 through January 1981, Desalination, 42, 115-128, 1982.
Mulder, M., Basic Principles of membrane technology, Kluwer Academic Publishers, The Netherlands, 1996.
Muzzareli, R. A. A., Chitin, Pergamon Press, Oxford, 1977.
Ngah, W. S. W., Ghani, S. A., Kamari, A., Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads, Bioresour. Technol., 96, 443-450, 2005.
Ong, S. T., Tay, E. H., Ha, S. T., Lee, W. N., Keng, P. S., Equilibrium and continuous flow studies on the sorption of Congo Red using ethylenediamine modified rice hulls, Int. J. Phys. Sci., 4, 683-690, 2009.
Popuri, S. R., Vijaya, Y., Boddu, V. M., Abburi, K., Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads, Bioresour. Technol., 100, 194-199, 2009.
Qu, Q. S., Xu, P., Mangelings, D., Yang, C., Hu, X. Y., Facile synthesis and size control of highly monodispersed hybrid silica spheres through a novel nuclei controlling method, J. Non-Cryst. Solids, 357, 976-980, 2011.
Qu, Q., Gu, Q., Gu, Z., Shen, Y., Wang, C., Hu, X., Efficient removal of heavy metal from aqueous solution by sulfonic acid functionalized nonporous silica microspheres, Colloid Surf. A-Physicochem. Eng. Asp., 415, 41-46 2012.
Rai, P. K., Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach, Int. J. Phytorem., 10, 133-160, 2008.
Ramya, R., Sudha, P. N., Adsorption of Cadmium(II) and Copper(II) ions from Aqueous Solution using Chitosan Composite, Polym. Compos., 2013.
Reiad1, N. A., Salam, O. E. A., Abadir, E. F., Harraz, F. A., Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane, J. Environ. Sci., 24, 1425-1432, 2012.
Ruthven, D. M., Principles of Adsorption and Adsorption Process, John Wiley & Sons, 1984.
Singhon, R., Husson, J., Knorr, M., Lakard, B., Euvrard. M., Adsorption of Ni(II) ions on colloidal hybrid organic–inorganic silica composites, Colloid Surf. B-Biointerfaces, 93, 1-7, 2012.
Souilah, O., Akretche, D. E., Amara, M., Water reuse of an industrial effluent by means of electrodeionisation, Desalination, 167, 49-54, 2004.
Stober, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69, 1968.
Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J. Tanada, S., Removal of lead ions in drinking water by coffee grounds as vegetable biomass, J. Colloid Interface Sci., 281, 56-61, 2005.
Unur, E., Functional nanoporous carbons from hydrothermally treated biomass for environmental purification, Microporous Mesoporous Mater., 168, 92-101, 2013.
Utomo, H. D., Hunter, K. A., Particle concentration effect: Adsorption of divalent metal ions on coffee grounds, Bioresour. Technol., 101, 1482-1486, 2010.
Wan, M. W., Kan, C. C., Rogel, B. D., Dalida, M. L. P., Adsorption of Copper (II) and Lead (II) ions from aqueous solution on chitosan-coated sand, Carbohydr. Polym., 80, 891-899, 2010.
Wan, M. W., Petrisor, I. G., Lai, H. T., Yen, T. F., Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination, Carbohydr. Polym., 55, 249-254, 2004.
Wang, H., Kang, J., Liu, H., Qu, J., Preparation of organically functionalized silica gel as adsorbent for copper ion adsorption, J. Environ. Sci., 21, 1473-1479, 2009.
Wang, Y., Wang, X., Wang, X., Liu, M., Wu, Z., Yang, L., Xia, S., Zhao, J., Adsorption of Pb(II) from aqueous solution to Ni-doped bamboo charcoal, J. Ind. Eng. Chem., 19, 353-359, 2013.
Weber, W. J., Morris, J. C., Kinetics of adsorption on carbon solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 31, 89-95, 1963.
Wu, J. B., Zang, S. Y., Yi, Y. L., Sol–gel derived ion imprinted thiocyanato-functionalized silica gel as selective adsorbent of cadmium(II), J. Sol-Gel Sci. Technol., 66, 434-442, 2013.
Wu, S. J., Li, F. T., Xu, R., Wei, S. H., Li, G. T., Synthesis of thiol-functionalized MCM-41 mesoporous silicas and its application in Cu (II), Pb (II) Ag (I), and Cr (III) removal, J. Nanopart. Res., 12, 2111-2124, 2010.
Wu, Z., Xiang, H., Kim, T., Chun, M. S., Lee, K., Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane, J. Colloid Interface Sci., 304, 119-124, 2006.
Xiao, H., Peng, H., Deng, S., Yang, X., Zhang, Y., Li, Y., Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation—Application in reactive black 5 adsorption from aqueous solution, Bioresour. Technol., 111, 127-133, 2012.
Yan, H., Dai, J., Yang, Z., Yang, H., Cheng, R., Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads, Chem. Eng. J., 174, 586-594, 2011.
Yao, Z. Y., Qi, J. H., Wang, L. H., Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu (II) onto chestnut shell, J. Hazard. Mater., 174, 137-143, 2010.
Zhang, Q., Deng, S., Yu, G., Huang, J., Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism, Bioresour. Technol., 102, 2265-2271, 2011.
Zheng, L., Jiang, F. H., Dong, P. J., Zhuang, Q. F., Li, F., Preparation of spherical silica-supported biosorbent for copper ions removal in wastewater based on sol-gel reaction and simple treatment with sodium hydroxide, Chem. Res., 26, 355-359, 2010.
Zhou, W., Dong, J. H., Qiu, K. Y., Wei, Y., Preparation and properties of poly(styrene-co-maleic anhydride)/silica hybrid materials by the in situ sol–gel process, J. Polym. Sci., Part A: Polym. Chem., 36, 1607-1613, 1998.
Zuo, C. S., Wiest, O., Wu, Y. D., Parameterization and Validation of Solvation Corrected Atomic Radii, J. Phys. Chem. A, 113, 12028-12034, 2009.
吳泰緯, 幾丁聚醣奈米複合材料之製備及性質研究, 中國文化大學材料科學與奈米科技研究所碩士論文, 2008.
李佩玟, 以 TPU@silica 改質聚乳酸生質複合材料之性質研究, 國立宜蘭大學化學工程與材料學系碩士論文, 2010.
李治鴻, 幾丁聚醣/二氧化矽複合膜製備與性質探討, 國立宜蘭大學化學工程與材料學系碩士論文, 2011.
林志銘, 幾丁聚醣/奈米二氧化矽複合薄膜之製備:改質劑效應, 國立宜蘭大學化學工程與材料學系碩士論文, 2012.
蕭人逢, 以溶膠凝膠法製備Chitosan / SiO2混成材料與性質之研究, 中國文化大學材料科學與製造研究所碩士論文, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊