跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/01 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游軒甯
研究生(外文):Hsuan-Ning Yu
論文名稱:應用Aspect Model於社群問答網站中尋找專家之研究–以Quora為例
論文名稱(外文):Finding Expert in CQA Websites by Using Aspect Model - Taking Quora as an Example
指導教授:劉英和劉英和引用關係
指導教授(外文):Ying-Ho Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊管理碩士學位學程
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
論文頁數:32
中文關鍵詞:CQA尋找專家
外文關鍵詞:CQAFinding Expert
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
在社群問答網站中,有大量的問題被發問,但回覆率不高且有些問題需要長時間的等待才會有人來回答,甚至沒有人回答。為了提高回覆率,本研究利用aspect model在Quora這個社群問答網站做研究,當新的問題被發問,即依照Quora網站上每個使用者過去回答過的內容與發問過的問題來看是否適合回答此問題;實驗結果發現根據問題的相關主題尋找適合的回覆者是較為準確的。
A large number of questions are posted in CQA websites, but the chance of getting responses is usually low. Some questions need to wait for a long time before getting responses, even no responses. In order to increase the chance of getting responses, we use aspect model to recommend answerers when a question is raised. The recommendation is based on each user’s answered and raised questions in Quora (a famous CQA website). Our study find that recommendations according to questions’ related topics are more accurate.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 VI
公式目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究問題與目的 3
第二章 文獻探討 5
2.1 社群問答網站尋找專家 5
2.2 自然語言工具(Natural Language Toolkit, NLTK) 7
第三章 研究方法 9
3.1 使用者間的關係 10
3.2 使用者與主題的關係 10
3.3 問題與主題的關係 12
第四章 實驗結果 13
4.1 實驗環境 13
4.2 實驗資料 13
4.3 資料處理 14
4.4 實驗結果 16
4.4.1 關鍵字取至30 次的結果 16
4.4.2 關鍵字取至25 次的結果 19
4.4.3 關鍵字取至20 次的結果 22
4.4.4 綜合三個實驗的結果 25
第五章 結論與未來展望 27
5.1 結論 27
5.2 未來展望 27
參考文獻 29
[1] Yahoo! Answers: https://answers.yahoo.com/
[2] Baidu Knows: http://zhidao.baidu.com/
[3] Stack Overflow: http://stackoverflow.com/
[4] Quora: https://www.quora.com/
[5] T.C. Zhou, M.R. Lyu, and I. King, A Classification-based approach to question routing in community question answering, in Proceedings of the 21st International Conference on World Wide Web, pp. 783-790, 2012.
[6] B. Li and I. King, Routing questions to appropriate answerers in community question answering services, in Proceedings of the 19th ACM international conference on Information and knowledge management, pp. 1585-1588, 2010.
[7] C. Arthur and J. Kiss, Quora: the hottest question-and-answer website you've probably never heard of, The Guardian, 2011.
[8] F. Riahi, Z. Zolaktaf, M. Shafiei, and E. Milios, Finding expert users in community question answering, in Proceedings of the 21st international conference on World Wide Web, pp. 791-798, 2012.
[9] X. Liu, W.B. Croft, and M. Koll, Finding experts in community-based questionanswering services, in Proceedings of the 14th ACM international conference on Information and Knowledge Management, pp. 315-316, 2005.
[10] D. Hu, S. Gu, S. Wang, L. Wenyin, and E. Chen, Question recommendation for userinteractive question answering systems, in Proceedings of the 2nd international conference on Information Management and Communication, pp. 39-44, 2008.
[11] T. Hofmann, Probabilistic Latent Semantic Analysis, in Proceedings of the 15th conference on Uncertainty in Artificial Intelligence, pp.289-296, 1999.
[12] M. Qu, G. Qiu, X. He, C. Zhang, H. Wu, J. Bu, and C. Chen, Probabilistic question recommendation for question answering communities, in Proceedings of the 18th international conference on World Wide Web, pp. 1229-1230, 2009.
[13] B. Li and I. King, Routing questions to appropriate answerers in community question answering services, in Proceedings of the 19th ACM international conference on Information and Knowledge Management, pp. 1585-1588, 2010.
[14] D. Blei, A. Ng, and M. Jordan, Latent dirichlet allocation, Journal of Machine Learning Research, vol.3, pp. 993-1022, 2003.
[15] L. Du, W. Buntine, and H. Jin, A segmented topic model based on the two-parameter poisson-dirichlet process, Machine Learning, vol.81, pp. 5-19, 2010.
[16] G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing and Management, pp. 513-523, 1988.
[17] J. Guo, S. Xu, S. Bao, and Y. Yu, Tapping on the potential of Q&A community by recommending answer providers, in Proceedings of the 17th ACM conference on Information and Knowledge Management, pp. 921-930, 2008.
[18] M. Liu, Y. Liu, and Q. Yang, Predicting best answerers for new questions in community question answering, in Proceedings of the 11th international conference on Web-Age Information Management, pp. 127-138, 2010.
[19] G. Liu and T. Hao, User-based question recommendation for question answering system, International Journal of Information and Education Technology, vol. 2, No. 3, pp.243-246, 2012.
[20] G. Dror, Y. Koren, Y. Maarek, and I. Szpektor, I want to answer, who has a question? Yahoo! answers recommender system, in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1109-1117, 2011.
[21] E. Gabrilovich and S. Markovitch, Computing semantic relatedness using Wikipedia-based explicit semantic analysis, in Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611, 2007.
[22] X. Li, J. Ma, Y. Yang, and D. Wang, A Service Mode of Expert Finding in Social Network, in Proceedings of the International Conference on Service Sciences, pp. 220-223, 2013.
[23] D. Horowitz and S.D. Kamvar, The anatomy of a large-scale social search engine, in Proceedings of the 19th International Conference on World Wide Web, pp. 431–440, 2010.
[24] Z. Zhao, L. Zhang, X. He, and W. Ng, Expert Finding for Question Answering via Graph Regularized Matrix Completion, IEEE Transactions on Knowledge and Data Engineering, vol.27, no.4, pp. 993-1004, 2015.
[25] NLTK: http://www.nltk.org/
[26] M. Lobur, A. Romanyuk, and M. Romanyshyn, Using NLTK for educational and scientific purposes, in 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), 2011
[27] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, O’Reilly Media, Inc., 2009
[28] D. Horowitz and S.D. Kamvar, The anatomy of a large-scale social search engine, in Proceedings of the 19th International Conference on World Wide Web, pp. 431–440, 2010.
[29] T. Hofmann, Collaborative filtering via Gaussian probabilistic latent semantic analysis, in Proceedings of 26th International ACM SIGIR Conference, pp. 259-266, 2003.
[30] Watir: https://rubygems.org/gems/watir/versions/5.0.0
[31] Nokogiri: https://rubygems.org/gems/nokogiri
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top