跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊伊
研究生(外文):CHEN, CHUN-YI
論文名稱:探討真菌凝集素對於消化系統功能的影響
論文名稱(外文):Exploring the Effects of Fungal Lectin on the Function of Digestive System
指導教授:尤仁音
指導教授(外文):YOU, REN-IN
口試委員:吳文陞朱清良
口試委員(外文):WU, WEN-SHENGCHU, CHING-LIANG
口試日期:2018-07-13
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學生物技術碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:38
中文關鍵詞:真菌免疫調節蛋白調節型樹突細胞腸繫膜淋巴結腸上皮細胞
外文關鍵詞:FIPrDCMLNIEC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
胃腸道在攝取和消化食物扮演重要角色,也因此它暴露於許多的食源性抗原和微生物群中的細菌抗原。同時,腸道包圍著大量的免疫細胞,以識別和攻擊外來抗原和微生物的威脅。腸道上皮細胞是胃腸道的關鍵成員,負責免疫細胞和腸腔微生物之間的相互作用,以抵抗病原體侵襲,並且對共生的微生物產生耐受性。免疫—上皮間的通訊失調,會使得腸內平衡狀態被破壞,並導致腸道的免疫性疾病。些許的真菌凝集素被發現具有免疫調節活性,亦稱為真菌免疫調節蛋白(FIP),它們能夠刺激免疫細胞,並增強細胞激素的產生,而且能夠抑制過敏反應和具有抗腫瘤活性。在本研究,先以口服餵食小鼠,收取腸道組織來評估FIP的作用。實驗結果顯示在腸繫膜淋巴結(MLN),調節型樹突細胞(rDC)的數量和rDC反應基因的表現受FIP調控。更進一步在骨髓衍生的rDC證明FIP在rDC的調節。為了研究FIP在腸道上皮的作用,以抗癌藥刺激腸上皮細胞(IEC),來測定FIP對生長曲線和傷口癒合的影響。結果顯示FIP具有保護作用,能使抗癌藥物刺激後的IEC回復。總結,FIP在腸道中的活性,透過調節rDC和IEC的功能,而有助於調控腸道的動態平衡。


 The gastrointestinal tract plays major role in taking and digesting food. Therefore, it exposed to a lot of food-borne antigens and bacterial antigens in the microbiota. Simultaneously, the gut surrounds a large quantity of the immune cells to identify and attack foreign antigens and microbial threats. The intestinal epithelium is key member of gastrointestinal tract that charged with the interaction between immune cells and luminal organisms to against pathogens invasion versus create tolerance of commensal microbes. The dysregulated immune-epithelial communication defect the intestinal homeostasis and cause immunopathology in gut. Some fungal lectins have been identified with immunomodulatory activity also called fungal immunomodulatory protein (FIP). They are capable of stimulating the proliferation of lymphocyte, monocytes and enhancing production of cytokines, and are competent of inhibiting allergic reactions and anti-tumor activities. In this study, their immunomodulatory effects were evaluated using orally administration to mice and harvest intestine tissues. The population of regulatory dendritic cells (rDC) in mesenteric lymph nodes (MLN) and the expression level of rDC-responsive genes are regulated by FIP. Using bone marrow derived rDC further proved specific regulation of FIP on rDC. To further investigate the role of FIP on intestinal epithelium, the growth curve and wound healing assay of intestinal epithelial cells (IEC) from anti-cancer drugs treatment were performed when FIP stimulation. The recovery of IEC from FIP treatment after anti-cancer drug stimulation proved that FIP have protective effect on intestinal epithelium. In conclusion, immunomodulatory activities of fungal lectin at gut via regulating function of rDC and IEC with help to intestine homeostasis.




摘要……………………………………………………………………………………….…1
Abstract………………………………………………….…………………….……2
縮寫………………………………………………….……………...………….……3
一、研究背景…………………………………………………………...…………4
一、消化系統的功能……………………………….………………………...4
二、腸表皮細胞(intestinal epithelial cells, IECs)………….……………4
三、腸道中的免疫細胞……………………………………..………………..5
四、醛脫氫酶(aldehyde dehydrogenase : ALDH)……………….………6
五、菇類凝集素………………………………………………………………..7
六、抗癌藥物對腸道表皮的作用………………………………………….9
二、研究目的………………………………………………..…………...………10
三、實驗材料與方法…………………………………………………………11
三、一分子生物實驗…………………………………………………………..11
三、一 (一)核醣核酸抽取……………………………………………….11
三、一 (二)反轉錄反應……………………….…………………………..11
三、一 (三)聚合酶連鎖反應……………………………..………………12
三、一 (四)即時聚合酶連鎖反應……………………………..………..12
三、一 (五)蛋白質電泳…………………………………...………………12
三、一 (六)西方墨點法……………………….…………………………..13
三、二細胞生物實驗……………………………………………….………….14
三、二 (一)細胞培養…………………………………….....…..…………..14
三、二 (二)骨髓細胞分化成調節型樹突細胞……………………..….14
三、二 (三)流式細胞儀分析細胞表面抗原……………….…………..14
三、二 (四)流式細胞儀分析醛脫氫酶活性……….……….………….15
三、二 (五)腸表皮細胞癒合試驗…………………..……...…………….15
三、二 (六)酵素連結免疫試驗…………..……………........…………….15
三、三動物實驗………………………………………...………...…………….16
三、三 (一)小鼠口服餵食……………………………..………………….16
三、三 (二)眼窩採血……………………………...……………………….16
三、三 (三)皮下注射……………………………….......………………….16
三、三 (四)腹腔注射………………………………………...…………….17
三、三 (五)脾臟萃取……………………………………...……………….17
三、三 (六)骨髓細胞萃取……………………………...…...…………….17
三、三 (七)組織切片與脫蠟………………………………...……..…….17
三、三 (八)蘇木素-伊紅組織染色……………………………..……….18
三、三 (九)組織免疫化學染色……………………………..……..…….18
三、三 (十)組織免疫螢光染色………………………………....……….19
三、四統計分析方法…………………...….…………………...……..……….20
四、結果………………………………………………...…………………………20
一、小鼠組織醛脫氫酶表現的分析……………………………………..20
二、小鼠骨髓細胞分化的樹突細胞之醛脫氫酶表現量及活性的分析………………………...………………………………………………..……21
三、腸表皮細胞的細胞凋亡蛋白的分析……………………….………23
四、腸表皮細胞的自由基含量……………………………..……………..23
五、腸表皮細胞的移動能力分析………………………...………………24
五、討論……………………………………………………………...……………25
六、參考文獻………………………………………….…………………………27
七、圖表……………………………………………………...……………………30



1.Helander, H.F. and L. Fandriks, Surface area of the digestive tract - revisited. Scand J Gastroenterol, 2014. 49(6): p. 681-9.
2.Mowat, A.M. and W.W. Agace, Regional specialization within the intestinal immune system. Nat Rev Immunol, 2014. 14(10): p. 667-85.
3.Grabinger, T., et al., Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death & Disease, 2014. 5(5): p. e1228.
4.Pentecost, M., et al., Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. PLoS Pathog, 2010. 6(5): p. e1000900.
5.Johansson, M.E., H. Sjovall, and G.C. Hansson, The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol, 2013. 10(6): p. 352-61.
6.Parigi, S.M., et al., Breast Milk and Solid Food Shaping Intestinal Immunity. Front Immunol, 2015. 6: p. 415.
7.Bekiaris, V., E.K. Persson, and W.W. Agace, Intestinal dendritic cells in the regulation of mucosal immunity. Immunol Rev, 2014. 260(1): p. 86-101.
8.Agrawal, A., S. Agrawal, and S. Gupta, Role of Dendritic Cells in Inflammation and Loss of Tolerance in the Elderly. Frontiers in Immunology, 2017. 8: p. 896.
9.Serrano, I., A. Luque, and J.M. Aran, Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol, 2018. 9: p. 892.
10.Denning, T.L., et al., Functional Specializations of Intestinal Dendritic Cell and Macrophage Subsets That Control Th17 and Regulatory T Cell Responses Are Dependent on the T Cell/APC Ratio, Source of Mouse Strain, and Regional Localization. The Journal of Immunology, 2011. 187(2): p. 733.
11.Biswas, A., et al., WASP-mediated regulation of anti-inflammatory macrophages is IL-10 dependent and is critical for intestinal homeostasis. Nat Commun, 2018. 9(1): p. 1779.
12.Goverse, G., et al., Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J Immunol, 2017. 198(5): p. 2172-2181.
13.Schulz, O., et al., Intestinal CD103(+), but not CX3CR1(+), antigen sampling cells migrate in lymph and serve classical dendritic cell functions. The Journal of Experimental Medicine, 2009. 206(13): p. 3101-3114.
14.House, C.D., et al., NF-kB promotes ovarian tumorigenesis via classical pathways supporting proliferative cancer cells and alternative pathways supporting ALDH+ cancer stem-like cells. Cancer Research, 2017.
15.Mann, E.R. and X. Li, Intestinal antigen-presenting cells in mucosal immune homeostasis: Crosstalk between dendritic cells, macrophages and B-cells. World Journal of Gastroenterology : WJG, 2014. 20(29): p. 9653-9664.
16.McDonald, K.G., et al., Epithelial Expression of the Cytosolic Retinoid Chaperone Cellular Retinol Binding Protein II Is Essential for in Vivo Imprinting of Local Gut Dendritic Cells by Lumenal Retinoids. The American Journal of Pathology, 2012. 180(3): p. 984-997.
17.Goverse, G., et al., Vitamin A metabolism and mucosal immune function are distinct between BALB/c and C57BL/6 mice. Eur J Immunol, 2015. 45(1): p. 89-100.
18.Kino, K., et al., Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. J Biol Chem, 1989. 264(1): p. 472-8.
19.Tong, M.H., et al., High processing tolerances of immunomodulatory proteins in Enoki and Reishi mushrooms. J Agric Food Chem, 2008. 56(9): p. 3160-6.
20.Wu, J.R., et al., Preclinical trials for prevention of tumor progression of hepatocellular carcinoma by LZ-8 targeting c-Met dependent and independent pathways. PLoS One, 2015. 10(1): p. e0114495.
21.Lin, H.-J., et al., An Immunomodulatory Protein (Ling Zhi-8) from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery. Evidence-based Complementary and Alternative Medicine : eCAM, 2014. 2014: p. 916531.
22.Lin, Y.L., et al., An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J Leukoc Biol, 2009. 86(4): p. 877-89.
23.Hsu, H.Y., et al., Reishi Protein LZ-8 Induces FOXP3(+) Treg Expansion via a CD45-Dependent Signaling Pathway and Alleviates Acute Intestinal Inflammation in Mice. Evid Based Complement Alternat Med, 2013. 2013: p. 513542.
24.Kino, K., et al., An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diabetologia, 1990. 33(12): p. 713-8.
25.Guo, W.J., et al., Taxol induces concentration-dependent apoptotic and paraptosis-like cell death in human lung adenocarcinoma (ASTC-a-1) cells. J Xray Sci Technol, 2010. 18(3): p. 293-308.
26.Torres, K. and S.B. Horwitz, Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res, 1998. 58(16): p. 3620-6.
27.Wang, Y., G. Schmid-Bindert, and C. Zhou, Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol, 2012. 4(1): p. 19-29.
28.Crittenden, S., et al., Purine metabolism controls innate lymphoid cell function and protects against intestinal injury. Immunol Cell Biol, 2018.
29.Kim, E.R. and D.K. Chang, Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol, 2014. 20(29): p. 9872-81.
30.Sun, M., et al., Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol, 2015. 8(5): p. 969-978.
31.Laffont, S., K.R. Siddiqui, and F. Powrie, Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol, 2010. 40(7): p. 1877-83.
32.Mucida, D., et al., Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. Immunity, 2009. 30(4): p. 471-2; author reply 472-3.
33.Mucida, D., et al., Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science, 2007. 317(5835): p. 256-60.
34.Cojoc, M., et al., Aldehyde Dehydrogenase Is Regulated by beta-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells. Cancer Res, 2015. 75(7): p. 1482-94.
35.Mamat, S., et al., Transcriptional Regulation of Aldehyde Dehydrogenase 1A1 Gene by Alternative Spliced Forms of Nuclear Factor Y in Tumorigenic Population of Endometrial Adenocarcinoma. Genes Cancer, 2011. 2(10): p. 979-84.
36.Ou, C.-C., et al., Fungal immunomodulatory proteins alleviate docetaxel-induced adverse effects. Journal of Functional Foods, 2015. 19: p. 451-463.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top