參考文獻
1.International Renewable Energy Agency, IRENA Data and Statistics. http://resourceirena.irena.org/gateway/dashboard/index.html
2.R. Kempener and G.De Vivero, Renewables and Electricity Storage A technology roadmap for REmap 2030, (2015).
3.P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renewable Sustainable Energy Rev. 29 (2014) 325–335.
4.D. Castelvecchi,聚風發電(甘錫安,譯),科學人雜誌,123(2012年5月)60–71。
5.R. Kempener and E. Borden, BATTERY STORAGE FOR RENEWABLES: MARKET STATUS AND TECHNOLOGY OUTLOOK, (2015).
6.M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane, New All-Vanadium Redox Flow Cell, J. Electrochem. Soc. 133 (1986) 1057–1058.
7.Q. Luoa, H. Zhanga, J. Chena, D. Youa, C. Suna, Y. Zhanga, Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery, J. Membr. Sci. 325 (2008) 553–558.
8.S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang,
M. A. Hickner, Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries, Electrochem. Commun. 12 (2010) 1650–1653.
9.D. Chen, S. Wang, M. Xiao, D. Han, Y. Meng, Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery, J. Power Sources 195 (2010) 7701–7708.
10.B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane Development for Vanadium Redox Flow Batteries, ChemSusChem 4 (2011) 1388–1406.
11.S. Fujita, A. Koiwai, M. Kawasumi, S. Inagaki, Enhancement of Proton Transport by High Densification of Sulfonic Acid Groups in Highly Ordered Mesoporous Silica, Chem. Mater. 25 (2013) 1584–1591.
12.M.Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, Gordon L. Graff, J. Hu, Investigation of local environments in Nafion–SiO2 composite membranes used in vanadium redox flow batteries, Solid State Nucl. Magn. Reson. 42 (2012) 71–80.
13.J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery, J. Power Sources 166 (2007) 531–536.
14.N. Wang, S. Peng, D, Lu, S. Liu, Y. Liu, K. Huang, Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery, J. Solid State Electrochem. 16 (2012) 1577–1584.
15.X. Tenga, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chena, Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions, J. Membr. Sci. 341 (2009) 149–154.
16.Q. Luo, H. Zhang, J. Chena, P. Qian, Y. Zhai, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Membr. Sci. 311 (2008) 98–103.
17.H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim, M. Skyllas-Kazacos, Membranes for Redox Flow Battery Applications, Membranes 2 (2012) 275–306.
18.T. Mohammadi, M. Skyllas-Kazacos, Modification of anion-exchange membranes for vanadium redox flow battery applications, J. Power Sources 63 (1996) 179–186.
19.T. Mohammadi, M. Skyllas-Kazacos, Evaluation of the chemical stability of some membranes in vanadium solution, J. Appl. Electrochem. 27 (1997) 153–160.
20.J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, X. Qiu, Self-assembled poly electrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries, J. Mater. Chem. 18 (2008) 1232–1238.
21.J. Qiua, M. Zhai, J. Chen, Y. Wang, J. Peng, L. Xu, J. Li, G. Wei, Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method,
J. Membr. Sci. 342 (2009) 215–220.
22.T. Mohammadi, M. Skyllas-Kazacos, Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications, J. Power Sources 56 ( 1995) 91–96.
23.T. Mohammadi, M. Skyllas-Kazacos, Preparation of sulfonated composite membrane for vanadium redox flow battery applications, J. Membr. Sci. 107 (1995) 35–45.
24.S. C. Chieng, M. Kazacos, M. Skyllas-Kazacos, Modification of Daramic, microporous separator, for redox flow battery applications, J. Membr. Sci. 75 (1992) 81–91.
25.X. Teng, J. Lei, X. Gu, J. Dai, Y. Zhu, F. Li, Nafion-sulfonated organosilica composite membrane for all vanadium redox flow battery, Ionics 18 (2012) 513–521.
26.T. Norby, Solid-state protonic conductors: principles, properties, progress and prospects, Solid State Ionics 125 (1999) 1–11.
27.B. Groß, St. Mariona, R. Hempelmann, D. Grambole, F. Herrmann, Proton conducting Ba3Ca1.18Nb1.82O8.73/H2O: Sol–gel preparation and pressure /composition isotherms, Solid State Ionics 109 (1998) 13–23.
28.P. Murugaraj, K. D. Kreuer, T. He, T. Schober, J. Maier, High proton conductivity in barium yttrium stannate Ba2YSnO5.5, Solid State Ionics 98 (1997) 1–6.
29.T. Schober, Protonic conduction in BaIn0.5Sn0.5O2.75, Solid State Ionics 109 (1998) 1–11.
30.T. Schober, J. Friedrich, F. Krug, Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300 ℃, Solid State Ionics 99 (1997) 9–13.
31.W. Fischer, G. Reck, T. Schober, Structural transformation of the oxygen and proton conductor Ba2In2O5 in humid air: an in-situ X-ray powder diffraction study, Solid State Ionics 116 (1999) 211–215.
32.N. Binesh, V. Bhat, S.V. Bhat, Mechanism of protonic conduction in defect pyrochlore HNbWO6•xH2O using MAS NMR, Solid State Ionics 86-88 (1996) 665–668.
33.H.-J. Lee, J.-H. Kim, J.-H. Won, J.-M. Lim, Y. Taik Hong, S.-Y. Lee, Highly Flexible, Proton-Conductive Silicate Glass Electrolytes for Medium-Temperature/Low-Humidity Proton Exchange Membrane Fuel Cells, Appl. Mater. Interfaces 5 (2013) 5034–5043.
34.X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen, X. Qiu, Influences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries, J. Phys. Chem. B 109 (2005) 20310–20314.
35.N. Li, C. Xiao, S. An, X. Hu, Preparation and properties of PVDF/PVA hollow fiber membranes, Desalination 250 (2010) 530–537
36.Q. Bi, Q. Li, Y. Tian, Y. Lin, X. Wang, Hydrophilic Modification of Poly(vinylidene fluoride) Membrane with Poly(vinyl pyrrolidone) via a Cross-Linking Reaction, J. APPL. POLYM. SCI. 127 (2013) 394–401.
37.B. J. Cha, J. M. Yang, Effect of High-Temperature Spinning and PVP Additive on the Properties of PVDF Hollow Fiber Membranes for Microfiltration, Macromol. Res. 14 (2006) 596–602.
38.N. Pezeshk, D. Rana, R.M. Narbaitz, T. Matsuura, Novel modified PVDF ultrafiltration flat-sheet membranes, J. Membr. Sci. 389 (2012) 280– 286.
39.T.-Y. Liu, W.-C. Lin, L.-Y. Huang, S.-Y. Chen, M.-C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes, Polym. Adv. Technol. 16 (2005) 413–419.
40.M. Tao, F. Liu, L. Xue, Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation, J. Mater. Chem. 22 (2012) 9131–9137.
41.G.-D. Kang, Y.-M. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, J. Membr. Sci. 463 (2014) 145–165.
42.X. Shen, Y. Zhao, L. Chen, The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance, Biofouling 29 (2013) 991–1003.
43.J. Liu, X. Shen, Y. Zhao, L. Chen, Acryloylmorpholine-Grafted PVDF Membrane with Improved Protein Fouling Resistance, Ind. Eng. Chem. Res. 52 (2013) 18392−18400.
44.S. J. Oh, N. Kim, Y. T. Lee, Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement, J. Membr. Sci. 345 (2009) 13–20.
45.N. Awanis Hashim, Y. Liu, K. Li, Preparation of PVDF Hollow Fiber Membranes Using SiO2 Particles: The Effect of Acid and Alkali Treatment on the Membrane Performances, Ind. Eng. Chem. Res. 50 (2011) 3035–3040.
46.C. Dong, G. He, H. Li, R. Zhao, Y. Han, Y. Deng, Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles, J. Membr. Sci. 387–388 (2012) 40–47.
47.L. Yan, S. Hong, M. L. Li, Y. S. Li, Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Technol. 66 (2009) 347–352.
48.S. Liang, K. Xiao, Y. Mo, X. Huang, A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling, J. Membr. Sci. 394–395 (2012) 184–192.
49.Y. H. Teow, A. L. Ahmad, J. K. Lim, B. S. Ooi, Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method, Desalination 295 (2012) 61–69.
50.X.-M. Wang, X.-Y. Li, K. Shih, In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes, J. Membr. Sci. 368 (2011) 134–143.
51.L.-Y. Yu, H.-M. Shen, Z.-L. Xu, PVDF–TiO2 Composite Hollow Fiber Ultrafiltration Membranes Prepared by TiO2 Sol–Gel Method and Blending Method, J. Appl. Polym. Sci. 113 (2009) 1763–1772.
52.J. R. Dua, S. Peldszus, P. M. Huck, X. Feng, Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment, Water Res. 43 (2009) 4559–4568.
53.R. Revanur, B. McCloskey, K. Breitenkamp, B. D. Freeman, T. Emrick, Reactive Amphiphilic Graft Copolymer Coatings Applied to Poly(vinylidene fluoride) Ultrafiltration Membranes, Macromolecules 40 (2007) 3624–3630.
54.A. Rahimpour, S.S. Madaeni, S. Zereshki, Y. Mansourpanah, Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting, Appl. Surf. Sci. 255 (2009) 7455–7461.
55.M. J. Han, G. N. B. Baroña, B. Jung, Effect of surface charge on hydrophilically modified poly(vinylidene fluoride) membrane for microfiltration, Desalination 270 (2011) 76–83.
56.Y. Chang, Y.-J. Shih, R.-C. Ruaan, A. Higuchi, W.-Y. Chen, J.-Y. Lai, Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility, J. Membr. Sci. 309 (2008) 165–174.
57.F. Liu, B.-K. Zhu, Y.-Y. Xu, Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers, Appl. Surf. Sci. 253 (2006) 2096–2101.
58.P. Wang, K.L. Tan, E.T. Kang, K.G. Neohb, Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J. Membr. Sci. 195 (2002) 103–114.
59.E. Fogarassy, A. Slaoui, C. Fuchs, J.P. Stoquert, Synthesis of SiO2 thin films by reactive excimer laser ablation, Appl. Surf. Sci. 54 (1992) 180–186.
60.P. J. Wolf, The plasma properties of laserablated SiO2, J. Appl. Phys. 72 (1992) 1280–1289.
61.P. Baeri, R. Reitano, N. Marino, SiO2 film deposition by XeC1 laser ablation of fused silica, Appl. Surf. Sci. 86 (1995) 128–133.
62.T. P. Chen, TienI Bao, Lin I, SiO2 thin film deposition by radio frequency oxygen plasma enhanced laser ablation from Si, Appl. Phys. Lett. 63 (1993) 2475–2477.
63.V. S. BAN, D. A. KRAMER, Thin Films of Semiconductors and Dielectrics produced by Laser Evaporation, J. Mater. Sci. 5 (1970) 978–982.
64.A. Slaoui, E. Fogarassy, C. Fuchs, P. Siffert, Properties of silicon dioxide films prepared by pulsedlaser ablation, J. Appl. Phys. 71 (1992) 590–596.
65.F. Nishida, J. M. McKieman, B. Dunn, J. I. Zink, In Situ Fluorescence Probing of the Chemical Changes during Sol–Gel Thin Film Formation, J. Am. Ceram. Soc. 78 (1995) 1640–1648.
66.R. Ganguli, Mesoporous Thin Silica Films Created by the Templating of CTAB Mesophases, Masters in Chemical & Nuclear Engineering Albuquerque University of New Mexico 1977.
67.K. Fontell, A. Khan, B. Lindström, D. Maciejewska, S. Puang-Ngern, Phase equilibria and structures in ternary systems of a cationic surfactant (C16 TABr or (C16 TA)2SO4), alcohol, and water, Colloid Polym. Sci. 269 (1991) 727–742.
68.C. Jeffrey Brinker, Y. Lu, A. Sellinger, H. Fan, Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Adv. Mater. 11 (1999) 579–585.
69.D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chem. Mater. 12 (2000) 2448–2459.
70.B. D. Jackson, Pulsed-Laser Deposition of Silicon Dioxide Thin-Films Using the Molecular Flourine Laser, Master of Applied Science Degree (1997).
71.M. OKOSHI, M. KURAMATSU, N. INOUE, Pulsed Laser Deposition of SiO2 Thin Films with Dimethylpolysiloxane Targets, Jpn. J. Appl. Phys. 41 (2002) 1395–1399.
72.周芳如,奈米化層狀金屬氧化物對酯化反應的催化,國立暨南國際大學應用化學系碩士論文,民104年。