跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昱昇
研究生(外文):Yu-Sheng Li
論文名稱:以脈衝雷射沉積法與溶膠-凝膠法製備二氧化矽質子傳導膜
論文名稱(外文):Preparation of Proton Conducting Silica Membranes via Pulsed Laser Deposition and Sol-gel Methods
指導教授:唐宏怡
指導教授(外文):Hung-Yi Tang
口試委員:唐宏怡廖明淵陳榮煇
口試委員(外文):Hung-Yi TangMing-Yuan LiaoRung-Huei Chen
口試日期:2016-01-27
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:83
中文關鍵詞:介孔結構有機-無機複合膜全釩液流電池溶膠-凝膠法脈衝雷射沉積法
外文關鍵詞:mesoporousorganic-inorganic complex membranevanadium redox flow batterysol-gel methodpulsed laser deposition.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠-凝膠法塗佈於多孔PVDF有機膜上,合成具有介孔結構的二氧化矽有機-無機複合膜,並應用在全釩液流電池的隔離膜。而為了增加溶膠-凝膠溶液和多孔PVDF的親和性,使用脈衝雷射沉積法對多孔PVDF進行表面修飾及改質。修飾過的PVDF膜做為溶膠-凝膠法的基板,可以生成約4微米厚的介孔二氧化矽緻密層,藉由同步形成的磺酸官能基增加質子通透速率。在離子選擇率測試當中,使選擇率超過Nafion膜。
The purpose of this study is to synthesize mesoporous silica organic-inorganic complex membranes for vanadium redox flow batteries via sol-gel method dip-coating on porous PVDF membranes. Pulsed laser deposition (PLD) was utilized for modifying the porous PVDF membranes in order to enhance the bonding between the sol-gel solution and the porous PVDF membranes. A 4 μm thick mesoporous silica coating over the membrane, achieved from dip-coating, resulted in the formation of an organic-inorganic composite membrane which by far improved the proton transport through sulfonic functional groups. The modified mesoporous silica organic-inorganic complex membrane was found to have better selectivity compared to the regular Nafion membranes.
目次
摘要 I
Abstract II
目次 III
圖目次 V
表目次 VI
第一章 緒論 1
第一節 儲能系統 1
第二節 全釩液流電池(VRB) 6
第三節 VRB半透膜必須具備的特性 8
第四節 VRB半透膜的設計 11
第五節 PVDF的親水性加強 19
第六節 研究動機 23
第七節 研究目的 24
第二章 藥品與儀器 25
第一節 使用藥品 25
第二節 使用儀器 26
第三章 實驗步驟 29
第一節 oPDA-HNbWO6•xH2O混合PVDF 29
第二節 PVDF混紡 HEMA有機聚合膜製備(PVDF Blending poly-HEMA,PBH) 30
第三節 無機粉末混合PBH 32
第四節 溶膠-凝膠法(sol-gel)合成介孔二氧化矽(Mesoporous Silica,MS) 33
第五節 脈衝雷射沉積法(Pulsed Laser Deposition,PLD)對PBH80進行表面修飾及改質 38
第六節 離子選擇率測試(ion selectivity test) 40
第七節 簡寫對照表 43
第四章 結果與討論 44
第一節 HNbWO6•xH2O做為功能性材料 44
第二節 oPDA-HNbWO6•xH2O混合PVDF 47
第三節 PVDF混紡 HEMA改善膜的親水性 50
第四節 無機粉末混合PBH離子選擇率測試 57
第五節 溶膠-凝膠法合成介孔二氧化矽無機層(MS) 59
第六節 MS塗佈於PBH80半透膜 62
第七節 脈衝雷射沉積法修飾及改質PBH80半透膜 67
第八節 MS塗佈於PLD-PBH80半透膜 67
第九節 PLD-PBH80、PLD-MS1半透膜的離子選擇率測試 71
第十節 結論 73
參考文獻 74

圖目次
圖 1 1:再生能源的年發電量,佔年總再生能源的百分比。 4
圖 1 2:三種能夠行媒介傳導質子的官能基 9
圖 1 3:三種常見的陽離子交換膜結構圖 13
圖 1 4:三種含有四級銨的陰離子交換膜結構圖 14
圖 1 5:兩種兩性聚合物的合成及結構 15
圖 3 1:合成PBH所使用的藥品結構 31
圖 3 2:EISA反應的相圖 36
圖 3 3:合成MS所使用的藥品結構 37
圖 3 4:PLD簡易裝置示意圖 39
圖 3 5:離子選擇率測試容器架設示意圖 41
圖 3 6:PBH80離子選擇率測試莫耳數對時間的線性關係圖 42
圖 4 1:oPDA-HNbWO6•1.5H2O合成示意圖 45
圖 4 2:oPDA-HNbWO6•xH2O粉末的XRD圖譜 46
圖 4 3:HNbWO6•xH2O插層反應的XRD圖譜 49
圖 4 4:合成PBH有機膜的示意圖 52
圖 4 5:PBH的FTIR吸收光譜 53
圖 4 6:PBH50俯視SEM影像 54
圖 4 7:PBH50橫截面SEM影像 55
圖 4 8:MS的合成示意圖 60
圖 4 9:溶膠-凝膠薄膜在載玻片上的XRD繞射圖 61
圖 4 10:sol-gel MS塗佈於PBH80的SEM影像 65
圖 4 11:半透膜高分子纖維的FESEM影像 66
圖 4 12:PLD-PBH80的SEM影像 68
圖 4 13:PLD-MS1的SEM影像 69
圖 4 14:PLD-PBH80以及PLD-MS1的FESEM影像 70

表目次
表 1 1:各儲能系統目前的最佳性能 5
表 1 2:Daramic及其修飾過的半透膜,在VRB性能比較。 16
表 3 1:簡寫對照 43
表 4 1:各比例oPDA-HNbWO6•xH2O PVDF複合膜的配方 48
表 4 2:無機材料混合PVDF的離子選擇率測試 48
表 4 3:PBH50和PBH80半透膜結構 56
表 4 4:PBH混合無機粉末的離子選擇率測試 58
表 4 5:MS塗佈於PBH80半透膜的離子選擇率測試 64
表 4 6:PLD-PBH80以及PLD-MS1的離子選擇率測試 72
參考文獻
1.International Renewable Energy Agency, IRENA Data and Statistics. http://resourceirena.irena.org/gateway/dashboard/index.html
2.R. Kempener and G.De Vivero, Renewables and Electricity Storage A technology roadmap for REmap 2030, (2015).
3.P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renewable Sustainable Energy Rev. 29 (2014) 325–335.
4.D. Castelvecchi,聚風發電(甘錫安,譯),科學人雜誌,123(2012年5月)60–71。
5.R. Kempener and E. Borden, BATTERY STORAGE FOR RENEWABLES: MARKET STATUS AND TECHNOLOGY OUTLOOK, (2015).
6.M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane, New All-Vanadium Redox Flow Cell, J. Electrochem. Soc. 133 (1986) 1057–1058.
7.Q. Luoa, H. Zhanga, J. Chena, D. Youa, C. Suna, Y. Zhanga, Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery, J. Membr. Sci. 325 (2008) 553–558.
8.S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang,
M. A. Hickner, Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries, Electrochem. Commun. 12 (2010) 1650–1653.

9.D. Chen, S. Wang, M. Xiao, D. Han, Y. Meng, Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery, J. Power Sources 195 (2010) 7701–7708.
10.B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, Z. Yang, Membrane Development for Vanadium Redox Flow Batteries, ChemSusChem 4 (2011) 1388–1406.
11.S. Fujita, A. Koiwai, M. Kawasumi, S. Inagaki, Enhancement of Proton Transport by High Densification of Sulfonic Acid Groups in Highly Ordered Mesoporous Silica, Chem. Mater. 25 (2013) 1584–1591.
12.M.Vijayakumar, B. Schwenzer, S. Kim, Z. Yang, S. Thevuthasan, J. Liu, Gordon L. Graff, J. Hu, Investigation of local environments in Nafion–SiO2 composite membranes used in vanadium redox flow batteries, Solid State Nucl. Magn. Reson. 42 (2012) 71–80.
13.J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery, J. Power Sources 166 (2007) 531–536.
14.N. Wang, S. Peng, D, Lu, S. Liu, Y. Liu, K. Huang, Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery, J. Solid State Electrochem. 16 (2012) 1577–1584.
15.X. Tenga, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chena, Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions, J. Membr. Sci. 341 (2009) 149–154.

16.Q. Luo, H. Zhang, J. Chena, P. Qian, Y. Zhai, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Membr. Sci. 311 (2008) 98–103.
17.H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim, M. Skyllas-Kazacos, Membranes for Redox Flow Battery Applications, Membranes 2 (2012) 275–306.
18.T. Mohammadi, M. Skyllas-Kazacos, Modification of anion-exchange membranes for vanadium redox flow battery applications, J. Power Sources 63 (1996) 179–186.
19.T. Mohammadi, M. Skyllas-Kazacos, Evaluation of the chemical stability of some membranes in vanadium solution, J. Appl. Electrochem. 27 (1997) 153–160.
20.J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, X. Qiu, Self-assembled poly electrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries, J. Mater. Chem. 18 (2008) 1232–1238.
21.J. Qiua, M. Zhai, J. Chen, Y. Wang, J. Peng, L. Xu, J. Li, G. Wei, Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method,
J. Membr. Sci. 342 (2009) 215–220.
22.T. Mohammadi, M. Skyllas-Kazacos, Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications, J. Power Sources 56 ( 1995) 91–96.

23.T. Mohammadi, M. Skyllas-Kazacos, Preparation of sulfonated composite membrane for vanadium redox flow battery applications, J. Membr. Sci. 107 (1995) 35–45.
24.S. C. Chieng, M. Kazacos, M. Skyllas-Kazacos, Modification of Daramic, microporous separator, for redox flow battery applications, J. Membr. Sci. 75 (1992) 81–91.
25.X. Teng, J. Lei, X. Gu, J. Dai, Y. Zhu, F. Li, Nafion-sulfonated organosilica composite membrane for all vanadium redox flow battery, Ionics 18 (2012) 513–521.
26.T. Norby, Solid-state protonic conductors: principles, properties, progress and prospects, Solid State Ionics 125 (1999) 1–11.
27.B. Groß, St. Mariona, R. Hempelmann, D. Grambole, F. Herrmann, Proton conducting Ba3Ca1.18Nb1.82O8.73/H2O: Sol–gel preparation and pressure /composition isotherms, Solid State Ionics 109 (1998) 13–23.
28.P. Murugaraj, K. D. Kreuer, T. He, T. Schober, J. Maier, High proton conductivity in barium yttrium stannate Ba2YSnO5.5, Solid State Ionics 98 (1997) 1–6.
29.T. Schober, Protonic conduction in BaIn0.5Sn0.5O2.75, Solid State Ionics 109 (1998) 1–11.
30.T. Schober, J. Friedrich, F. Krug, Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300 ℃, Solid State Ionics 99 (1997) 9–13.

31.W. Fischer, G. Reck, T. Schober, Structural transformation of the oxygen and proton conductor Ba2In2O5 in humid air: an in-situ X-ray powder diffraction study, Solid State Ionics 116 (1999) 211–215.
32.N. Binesh, V. Bhat, S.V. Bhat, Mechanism of protonic conduction in defect pyrochlore HNbWO6•xH2O using MAS NMR, Solid State Ionics 86-88 (1996) 665–668.
33.H.-J. Lee, J.-H. Kim, J.-H. Won, J.-M. Lim, Y. Taik Hong, S.-Y. Lee, Highly Flexible, Proton-Conductive Silicate Glass Electrolytes for Medium-Temperature/Low-Humidity Proton Exchange Membrane Fuel Cells, Appl. Mater. Interfaces 5 (2013) 5034–5043.
34.X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen, X. Qiu, Influences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries, J. Phys. Chem. B 109 (2005) 20310–20314.
35.N. Li, C. Xiao, S. An, X. Hu, Preparation and properties of PVDF/PVA hollow fiber membranes, Desalination 250 (2010) 530–537
36.Q. Bi, Q. Li, Y. Tian, Y. Lin, X. Wang, Hydrophilic Modification of Poly(vinylidene fluoride) Membrane with Poly(vinyl pyrrolidone) via a Cross-Linking Reaction, J. APPL. POLYM. SCI. 127 (2013) 394–401.
37.B. J. Cha, J. M. Yang, Effect of High-Temperature Spinning and PVP Additive on the Properties of PVDF Hollow Fiber Membranes for Microfiltration, Macromol. Res. 14 (2006) 596–602.

38.N. Pezeshk, D. Rana, R.M. Narbaitz, T. Matsuura, Novel modified PVDF ultrafiltration flat-sheet membranes, J. Membr. Sci. 389 (2012) 280– 286.
39.T.-Y. Liu, W.-C. Lin, L.-Y. Huang, S.-Y. Chen, M.-C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes, Polym. Adv. Technol. 16 (2005) 413–419.
40.M. Tao, F. Liu, L. Xue, Hydrophilic poly(vinylidene fluoride) (PVDF) membrane by in situ polymerisation of 2-hydroxyethyl methacrylate (HEMA) and micro-phase separation, J. Mater. Chem. 22 (2012) 9131–9137.
41.G.-D. Kang, Y.-M. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review, J. Membr. Sci. 463 (2014) 145–165.
42.X. Shen, Y. Zhao, L. Chen, The construction of a zwitterionic PVDF membrane surface to improve biofouling resistance, Biofouling 29 (2013) 991–1003.
43.J. Liu, X. Shen, Y. Zhao, L. Chen, Acryloylmorpholine-Grafted PVDF Membrane with Improved Protein Fouling Resistance, Ind. Eng. Chem. Res. 52 (2013) 18392−18400.
44.S. J. Oh, N. Kim, Y. T. Lee, Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement, J. Membr. Sci. 345 (2009) 13–20.

45.N. Awanis Hashim, Y. Liu, K. Li, Preparation of PVDF Hollow Fiber Membranes Using SiO2 Particles: The Effect of Acid and Alkali Treatment on the Membrane Performances, Ind. Eng. Chem. Res. 50 (2011) 3035–3040.
46.C. Dong, G. He, H. Li, R. Zhao, Y. Han, Y. Deng, Antifouling enhancement of poly(vinylidene fluoride) microfiltration membrane by adding Mg(OH)2 nanoparticles, J. Membr. Sci. 387–388 (2012) 40–47.
47.L. Yan, S. Hong, M. L. Li, Y. S. Li, Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep. Purif. Technol. 66 (2009) 347–352.
48.S. Liang, K. Xiao, Y. Mo, X. Huang, A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling, J. Membr. Sci. 394–395 (2012) 184–192.
49.Y. H. Teow, A. L. Ahmad, J. K. Lim, B. S. Ooi, Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method, Desalination 295 (2012) 61–69.
50.X.-M. Wang, X.-Y. Li, K. Shih, In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes, J. Membr. Sci. 368 (2011) 134–143.
51.L.-Y. Yu, H.-M. Shen, Z.-L. Xu, PVDF–TiO2 Composite Hollow Fiber Ultrafiltration Membranes Prepared by TiO2 Sol–Gel Method and Blending Method, J. Appl. Polym. Sci. 113 (2009) 1763–1772.

52.J. R. Dua, S. Peldszus, P. M. Huck, X. Feng, Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment, Water Res. 43 (2009) 4559–4568.
53.R. Revanur, B. McCloskey, K. Breitenkamp, B. D. Freeman, T. Emrick, Reactive Amphiphilic Graft Copolymer Coatings Applied to Poly(vinylidene fluoride) Ultrafiltration Membranes, Macromolecules 40 (2007) 3624–3630.
54.A. Rahimpour, S.S. Madaeni, S. Zereshki, Y. Mansourpanah, Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting, Appl. Surf. Sci. 255 (2009) 7455–7461.
55.M. J. Han, G. N. B. Baroña, B. Jung, Effect of surface charge on hydrophilically modified poly(vinylidene fluoride) membrane for microfiltration, Desalination 270 (2011) 76–83.
56.Y. Chang, Y.-J. Shih, R.-C. Ruaan, A. Higuchi, W.-Y. Chen, J.-Y. Lai, Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility, J. Membr. Sci. 309 (2008) 165–174.
57.F. Liu, B.-K. Zhu, Y.-Y. Xu, Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers, Appl. Surf. Sci. 253 (2006) 2096–2101.
58.P. Wang, K.L. Tan, E.T. Kang, K.G. Neohb, Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J. Membr. Sci. 195 (2002) 103–114.
59.E. Fogarassy, A. Slaoui, C. Fuchs, J.P. Stoquert, Synthesis of SiO2 thin films by reactive excimer laser ablation, Appl. Surf. Sci. 54 (1992) 180–186.
60.P. J. Wolf, The plasma properties of laserablated SiO2, J. Appl. Phys. 72 (1992) 1280–1289.
61.P. Baeri, R. Reitano, N. Marino, SiO2 film deposition by XeC1 laser ablation of fused silica, Appl. Surf. Sci. 86 (1995) 128–133.
62.T. P. Chen, TienI Bao, Lin I, SiO2 thin film deposition by radio frequency oxygen plasma enhanced laser ablation from Si, Appl. Phys. Lett. 63 (1993) 2475–2477.
63.V. S. BAN, D. A. KRAMER, Thin Films of Semiconductors and Dielectrics produced by Laser Evaporation, J. Mater. Sci. 5 (1970) 978–982.
64.A. Slaoui, E. Fogarassy, C. Fuchs, P. Siffert, Properties of silicon dioxide films prepared by pulsedlaser ablation, J. Appl. Phys. 71 (1992) 590–596.
65.F. Nishida, J. M. McKieman, B. Dunn, J. I. Zink, In Situ Fluorescence Probing of the Chemical Changes during Sol–Gel Thin Film Formation, J. Am. Ceram. Soc. 78 (1995) 1640–1648.
66.R. Ganguli, Mesoporous Thin Silica Films Created by the Templating of CTAB Mesophases, Masters in Chemical & Nuclear Engineering Albuquerque University of New Mexico 1977.
67.K. Fontell, A. Khan, B. Lindström, D. Maciejewska, S. Puang-Ngern, Phase equilibria and structures in ternary systems of a cationic surfactant (C16 TABr or (C16 TA)2SO4), alcohol, and water, Colloid Polym. Sci. 269 (1991) 727–742.
68.C. Jeffrey Brinker, Y. Lu, A. Sellinger, H. Fan, Evaporation-Induced Self-Assembly: Nanostructures Made Easy, Adv. Mater. 11 (1999) 579–585.
69.D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, G. D. Stucky, Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups, Chem. Mater. 12 (2000) 2448–2459.
70.B. D. Jackson, Pulsed-Laser Deposition of Silicon Dioxide Thin-Films Using the Molecular Flourine Laser, Master of Applied Science Degree (1997).
71.M. OKOSHI, M. KURAMATSU, N. INOUE, Pulsed Laser Deposition of SiO2 Thin Films with Dimethylpolysiloxane Targets, Jpn. J. Appl. Phys. 41 (2002) 1395–1399.
72.周芳如,奈米化層狀金屬氧化物對酯化反應的催化,國立暨南國際大學應用化學系碩士論文,民104年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top