Alriksson, B. (2006). Ethanol from lignocellulose: alkali detoxification of dilute-acid spruce hydrolysates. Karlstad University, Chemistry and Biomedical Sciences.
Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification withreducing agents. Bioresource Technology, 102(2), 1254-1263.
Boopathy, R., Bokang, H. & Daniels, L. (1993). Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. Journal of Industrial Microbiology, 11(3), 147-150.
Baek, S.-C. & Kwon, Y. J. (2007). Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnology and Bioprocess Engineering, 12, 404-409.
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Advances in Biochemical Engineering/Biotechnology, 108, 67–93.
Chandel, A. K., Kapoor, R. K., Singh, A. & Kuhad, R. C. (2007a). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950.
Cara, C., Ruiz, C., Ballesteros, M., Manzanares, P., Negro, M. J., & Castro, E. (2008). Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 87(6), 692–700.
Cao, G., Ren, N., Wang, A., Lee, D. J., Guo, W., Liu, B.,Feng, Y., & Zhao, Q. (2009). Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. international journal of hydrogen energy, 34(17), 7182-7188.
Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2, 5-dimethylfuroate with gold on nanoparticulated ceria. Journal of Catalysis, 265(1), 109-116.
Chandel, A.K., da Silva1, S. S., & Singh, O. V. (2011). Detoxification of lignocellulosic hydrolysates for improved bioethanol production. Biofuel Production-Recent Developments and Prospects, Chapter 10.
Chandel, A. K., Singh, O. V., Chandrasekhar, G., Rao, L. V. & Narasu, M. L. (2011a). Bioconversion of novel substrate, Saccharum spontaneum, a weedy material into ethanol by Pichia stipitis NCIM3498. Bioresource Technology, 102(2), 1709-1714.
de Jong, E., Dam, M. A., Sipos, L. & Gruter, G-J. M. (2012). Furandicarboxylic acid (FDCA), a versatile building block for a veryinteresting class of polyesters. Biobased monomers, polymers, and materials, 1105, 1-13.
Gandini, A., Silvestre, A. J., Neto, C. P., Sousa, A. F., & Gomes, M. (2009). The furan counterpart of poly (ethylene terephthalate): An alternative material based on renewable resources. Journal of Polymer Science Part A: Polymer Chemistry, 47(1), 295–298.
Greetham, D., Hart, A.J., & Tucker, G.A. (2016). Presence of low concentrations of acetic acid improves yeast tolerance to hydroxymethylfurfural (HMF) and furfural. Biomass and Bioenergy, 85, 53-60.
Hartmeier, W. (1998). Immobilized Biocatalysts. Heidelberg New York﹐82-102.
Holladay, J. E., Bozell, J. J., White, J. F., & Johnson, D. (2007). Top value-added chemicals from biomass. DOE Report PNNL﹐16983.
Heer, D.,Heine, D., & Sauer,U. (2009). Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductases. Applied and Environmental Microbiology, 75(24), 7631–7638.
Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100(10), 2706–2711.
Hu, C., Zhao, X., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843-4847.
International Energy Agency (2016).
Junter, G.A. & Jouenne, T. (2011). Immobilized Viable Cell Biocatalysts: A Paradoxical Development. Comprehensive Biotechnology, Chapter 2.36.
Jeihanipour, A., Karimi, K., & Taherzadeh, M. J. (2011). Acid hydrolysis of cellulose-based waste textiles. The 7th International Chemical Engineering Congress & Exhibition, Kish, Iran, 21–24.
Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels , 6(1), 6-16.
Keweloh, H., Heipieper, H. J., & Rehm, H. J. (1989). Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology , 31(4), 383-389.
Kitchaiya, P., Intanakul, P., & Krairis, M. (2003). Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology, 23 (2), 217–225.
Kamm, B. (2007). Production of platform chemicals and synthesis gas from biomass. Angewandte Chemie International Edition, 46(27), 5056-5058.
Kumar, P., Barrett, D.M., Delwiche, M.J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.
Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings of the National Academy of Sciences, 107(11), 4919-4924.
Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Efficient whole-cell biotransformation of 5- (hydroxymethyl) furfural into FDCA,2,5-furandicarboxylic acid. Bioresource Technology, 101(16), 6291-6296.
Lewkowski, J. (2001). Synthesis, chemistry and applications of 5-hydroxymethylfur-fural and its derivatives. ARKIVOC, 2001(i), 17-54.
López, M. J., Nichols, N. N., Dien, B. S., Moreno, J., & Bothast, R. J. (2004). Isolation of microorganisms for biological detoxification of lignocellulosic Hydrolysates. Applied Microbiology and Biotechnology, 64(1), 125-131.
Peng, L. U., Chen, L. J., Li, G. X., Shen, S. H., Wang, L. L., Jiang, Q. Y., & Zhang, J. F. (2007). Influence of furfural concentration on growth and ethanol yield of Saccharomyces kluyveri. Journal of Environmental Sciences, 19(12), 1528-1532.
Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., & Bell, A.T (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.
Lee, C., Zheng, Y.,& VanderGheynst, J. S. (2015). Effects of pretreatment conditions and post-pretreatment washing on ethanol production from dilute acid pretreated rice straw. Biosystems Engineering, 137 , 36–42.
Lee, S. A.,Wrona, L. J.,Cahoon, A. B.,Crigler, J., Eiteman, M. A., & Altman, E. (2016). Isolation and Characterization of Bacteria That Use Furans as the Sole Carbon Source. Applied Biochemistry and Biotechnology, 178(1), 76-90.
Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G.H., & Ardjmand, M. (2013). Lignocellulosic biomass to biorthanol, a comprehensive review with a focus on pretreatment. Renewable &Sustainable Energy Review, 27, 77-93.
Morrish, J. L., & Daugulis, A. J. (2008). Inhibitory effects of substrate and product on the carvone biotransformation activity of Rhodococcus erythropolis. Biotechnology letters, 30(7), 1245-1250.
Menon, V. & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science , 38(4), 522-550.
Maurya, D. P., Singla, A., & Negi , S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597–609.
Mishra, A., Sharma, A. K., Sharma, S., Bagai, R., Mathur, A. S., Gupta, R. P., & Tuli, D. K. (2016). Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor. Renewable Energy, 98, 57-63.
Nigam, J.N. (2001). Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. Journal of Biotechnology, 87(1), 17–27.
Palmqvist, E. & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25-33.
Pan, X. J., Gilkes, N., Kadla, J., Pye, K., Saka, S., & Gregg, D. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnology and Bioengineering, 94(5) , 851–861.
Pai ,O., Banoth, L., Ghosh, S., Chisti, Y., & Banerjee, U. C. (2014). Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochemistry, 49(4), 655-659.
Papageorgioua, G. Z., Papageorgioub, D. G., Terzopoulouc, Z., & Bikiarisc, D. N. (2016). Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. European Polymer Journal, 83, 202–229.
Qian, M., Tian, S., Li, X., Zhang, J., Pan, Y., & Yang, X. (2006). Ethanol production from diluteacidsoftwood hydrolysate by co-culture. Applied Biochemistry and Biotechnology, 134(3), 273–284.
Rafiqul, I. S. M. & Sakinah Mimi, A. M., (2012). Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science, 71, 431–437.
Ra, C. H. , Jeong, G. T., Shin, M. K., & Kim, S. K. (2013). Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresource Technology, 140, 421–425.
Rajana, K. & Carrierb, D.J. (2014). Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass and Bioenergy, 62, 222–227
Rasika, L., Nilsson, K., Holmgren, M., Madavi, B., Robert, T., Nilsson, & Sellstedt, A. (2016). Adaptability of Trametes versicolor to the lignocellulosic inhibitors furfural, HMF, phenol and levulinic acid during ethanol fermentation. Biomass and Bioenergy, 90, 95-100.
Renewable energy Policy Network for the 21st century. Renewables 2014. Global Status Report (2016).
Stredansky, M., Conti, E., Bertocchi, C., Matulova M., & Zanetti F. (1998) Succinoglycan production by Agrobacterium tumefaciens. Fermentation and Bioengineering, 85(4), 398-403.
Sun, Y. & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.
Saha, B.C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279–291.
Singh, A., Pant, D., Korres, N. E., Nizami A. S., Prasad, S., & Murphy, J.D. (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresource Technology, 101(13), 5003–5012.
Saritha, M., Arora, A., & Lata (2012). Biological pretreatment of lignocellulosic substrate for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 52(2), 122–130
Soleimani, M. & Tabil, L. (2014). Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochemical Engineering , 82, 166-173.
Siqueira, M. R. & Reginatto, V. (2015). Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates. Renewable Energy, 80, 109-116.
Shimin, K. & Jian Y. (2016). An intensified reaction technology for high levulinic acid concentration from lignocellulosic biomass. Biomass and Bioenergy, 95, 214-220.
Trevors, J. T., Van Elsas, J. D., Lee, H., & Van Overbeek, L. S. (1992). Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases, 1, 61-69.
Thomas, S.M., DiCosimo, R., & Nagarajan, A. (2002). Biocatalysis: applications and potentials for the chemical industry. Trends in Biotechnology , 20(6), 238–242.
Tong, X., Ma, Y., & Li, Y. (2010).Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1), 1-13.
Taha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., & Ball, A. (2016). Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current Opinion in Biotechnology, 38, 190–197.
Taskin, M., Ucar, M. H., Unver, Y., Kara, A. A., Ozdemir, M., & Ortucu, S. (2016). Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, 8, 97-103.
Van Zyl C., Prior B.A., & du Preez J.C. (1991). Acetic acid inhibition of D-xylose fermentation by Pichia stipites. Enzyme and Microbial Technology, 13(1), 82-86.
Villarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., & Silva, J. B. A. (2006). Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitolproduction by Candida guilliermondii. Enzyme Microbial Technology, 40(1), 17–24.
Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: feedstock and current technologies. Environmental Chemical Engineering, 2(1), 573–584.
Vandyck, T., Keramidasa, K., Saveyna, B., Kitousa, A., Vrontisib, Z. (2016). A global stocktake of the Paris pledges: Implications for energy systems and economy. Global Environmental Change, 41, 46-63.
Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S., & Huang, C. Z. (2000). Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere, 41(12), 1873-1879.
Wang, K. & Sun, R. C. (2010). Chapter 7.5 – Biorefinery Straw for Bioethanol. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, 267-287.
Wierckx, N., Koopman, F., Ruijssenaars, H. & Winde, J. (2011). Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Applied Microbiology and Biotechnology, 92(6), 1095-1105.
Wierckx, N., Schuurman, T. D. E., Blank, L. M. & Ruijssenaars, H. J. (2015). Whole-Cell Biocatalytic Production of 2,5-Furandicarboxylic Acid. Microorganisms in Biorefineries, 207-223.
Wang, W., Ling, H., & Zhao, H. (2015). Steam explosion pretreatment of corn straw on xylose recoveryand xylitol production using hydrolysate without detoxification. Process Biochemistry, 50(10), 1623-1628.
Yu, J., & Stahl, H. (2008). Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource technology, 99(17), 8042-8048.
Yang, C.F. & Huang, C.R. (2016). Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate. Bioresource Technology, 214, 311-318.
Zhang, Y.H., Ding, S.Y., Mielenz, J.R., Cui, J.B., Elander, R.T., Laser, M., Himmel, M..E, McMillan, J.R., & Lynd, L.R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(3), 214–223.
Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68.
Zajkoska, P., Rebroš, M., & Rosenberg, M. (2013). Biocatalysis with immobilized Escherichia coli. Applied microbiology and biotechnology, 97(4), 1441-1455.
Zhang, J., Li, J., Tang, Y., Lin, L., & Long, M. (2015). Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate Polymers, 130, 420-428.
Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66(C), 751–774.
陳國誠 (1992) 微生物酵素工程學,藝軒圖書出版社,263-312。
馬萍、祝力、孫淑英、梁冬梅 (2003) 海藻酸鈣凝膠微球的製備和 pH 依賴性溶脹,中國海洋药物,5期。
呂順吉 (2004) 結合固定化細胞與顆粒污泥程序進行厭氧醱酵產氫,碩士論文,逢甲大學,化學工程系。吳建一、鍾宛真、葉修鋒 (2006) 固定化酵素衍進與展望,化工年會,53(6),175-198。吳柏昀 (2009) 探討 Aspergillus niger 利用甘蔗渣生產檸檬酸之研究,碩士論文,中央大學,化學工程與材料工程系。张卉 (2010) 微生物工程,第二節 pH 對發酵的影響及控制,中国轻工业出版社。
林烱暐 (2010) 能源教育知識網-生質能應用原理http://www.enedu.org.tw/GreenEnergy/ge-4.phphttps://read01.com/J8x75L.html 於2017年3月13日藉網路瀏覽。
韓斌 (2011) 包埋法固定化微生物問题初探,百替生物,南開大學,環境科學系。
許惠如 (2011) 利用稻殼酸水解液生產生物絮凝劑-Schizophyllan glucan 之研究,碩士論文,中央大學,化學工程與材料工程系。奚 悦、焦姮、刘小宇 (2013) 固定化細胞技術及其應用研究進展,生命的化學,33(5),576-580。
經濟部能源局 (2015) 104年年報。
萬皓鵬 (2014) 生質物─後化石世代的重要能源與工業原料,科學發展,497, 52-59,於2017年3月13日藉網路瀏覽。
陳偉珉 (2014) 稻草經微波鹼處理與同步糖化共發酵生產乳酸之探討,碩士論文,明新科技大學,化學工程與材料科技系。行政院農業委員會 (2015) 農業廢棄物統計。
李志强、费本华、江泽慧 (2015) 發酵抑制物對葡萄糖發酵產乙醇之影響,化工進展,34,80-84。
黃啟睿 (2015) 利用微生物將藻類酸水解衍生物5-hydroxy-methylfurfural (5-HMF)轉化為 2,5-furan-dicarboxylicacid (FDCA)之研究,碩士論文,國立雲林科技大學,環境與安全衛生工程系。環保節能網訊 (2016) 固定化微生物技術及其處理廢水機制的研究進展https://read01.com/J8x75L.html 於2016年9月13日藉網路瀏覽。
黃承鈞 (2016) 呋喃系生質聚酯料於阻氣包裝材料之應用與發展趨勢,工業材料雜誌,353期。