跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡佳吟
研究生(外文):TSAI,JIA-YIN
論文名稱:木質纖維素水解抑制物對固定化細胞 Burkholderia cepacia 轉化 5-羥甲基糠醛為 2,5-呋喃二甲酸之影響
論文名稱(外文):Effect of lignocellulosic hydrolysis inhibitors on biotransforming 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid using immobilized cells of Burkholderia cepacia
指導教授:楊茱芳
指導教授(外文):YANG,CHU-FANG
口試委員:洪俊雄童心欣
口試委員(外文):HUNG, CHUN-HSIUNGTUNG,HSIN-HSIN
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:112
中文關鍵詞:固定化細胞Burkholderia cepacia5-羥甲基糠醛2,5-呋喃二甲酸水解抑制物鹽度
外文關鍵詞:Immobilized cellsBurkholderia cepacia5-Hydroxy-methylfurfural (5-HMF)2,5-Furan-dicarboxylic acid (FDCA)Hydrolysis inhibitorssalinity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
木質纖維素為地球上含量最豐富的生質物,適合作為生質能源之原料,但因組成複雜,往往需要前處理方能進行後續的發酵程序,廣泛使用的稀酸熱水解前處理,其過程不可避免會產生抑制物,進而造成下游微生物的生長抑制,影響發酵產能,其中以5-羥甲基糠醛(5-hydroxymethylfurfural, 5-HMF)、醋酸(acetic acid)與糠醛(furfural)等抑制物最為常見。
2,5-呋喃二甲酸(2,5-furan-dicarboxylic acid, FDCA)為美國能源部於2004年公布可源自生質物生產的重要化學物質之一,可藉由生物轉化5-HMF獲得;FDCA可取代石化產業生產之對苯二甲酸(Terephthalic acid, TA),進而合成綠色塑膠材料 polyethylene 2,5-furandicarboxylate (PEF),其性質更勝於一般石化工業產製的polyethylene-terephthalate (PET)。
相較於懸浮態細胞,固定化細胞有助於提升菌株對基質的耐受,特別是具有毒性的反應物或產物;尚有固液分離容易,節省分離成本之優點;另外,亦可藉由包埋高濃度菌量,提昇生產效率。基於 5-HMF 移除的必要性與 FDCA 的開發生產,實驗室分離有可將 5-HMF 轉化為 FDCA之本土菌株 Burkholderia cepacia H-2。本研究延續前人之研究,希望藉由固定化細胞諸多優點來優化菌株Burkholderia cepacia H-2轉化5-HMF為FDCA之效果,實驗先進行兩種細胞型態比較,以評估固定化菌株Burkholderia cepacia H-2對轉化5-HMF之可行性;進一步找出最適包埋菌量,並進行固定化細胞特性研究;再探究不同種類抑制物與其濃度,以及鹽度對固定化菌株Burkholderia cepacia H-2轉化5-HMF的影響。
結果顯示相較於懸浮態細胞,固定化細胞能於低pH值下維持穩定的5-HMF轉化效能,1851 mg/L 5-HMF可於32小時內轉化完畢,且有較佳之FDCA生成量;隨包埋菌量的增加,5-HMF轉化所需時間越短,其中以包埋菌量175 mg/L (相當O.D. 0.3)為最佳包埋菌量,能於24時內將1894 mg/L 5-HMF轉化完全,終點累積1917 mg/L FDCA。無論固定化細胞包埋死菌與否皆可吸附5-HMF與FDCA,包埋死菌與未包埋菌體固定化細胞之5-HMF吸附量分別為120 mg/L與220 mg/L, FDCA吸附量分別為75 mg/L與60 mg/L。隨著固定化細胞使用循環次數增加,5-HMF轉化量隨之減少,循環使用16次後仍可維持75%以上之5-HMF轉化率。
不同水解抑制物實驗結果顯示甲酸濃度越高,則5-HMF轉化速率略降,當濃度低於3000 mg/L以下時,5-HMF轉化率未顯著受到影響,但濃度低於1000 mg/L則有助提升5-HMF轉化率,但當甲酸濃度達5000 mg/L時,FDCA轉化量及5-HMF轉化率明顯下滑;此外,甲酸可被菌株Burkholderia cepacia H-2降解。醋酸濃度低於4390 mg/L以下時不影響5-HMF轉化與FDCA生成,其5-HMF轉化率介於87~90%。隨糠醛濃度越高,5-HMF轉化速率越低,FDCA生成速率也越慢,當糠醛濃度高於1000 mg/L時,5-HMF無法轉化完全,但5-HMF轉化率較低濃度糠醛存在時高;此外,糠醛於5-HMF轉化過程中亦會被菌株降解,濃度低於500 mg/L時可被固定化細胞完全降解。乙醯丙酸對5-HMF轉化並無顯著影響,此外,菌株能利用乙醯丙酸作為碳源,乙醯丙酸濃度越高,所需降解時間越長。酚濃度越高,則5-HMF轉化速率越低,但對5-HMF轉化率無顯著影響;當酚添加濃度越高,則固定化細胞去除酚總量越高。於不同鹽度實驗中,隨NaCl濃度增加,5-HMF轉化速率明顯下降,FDCA生成速率亦隨之下降,當NaCl濃度高於6%時,5-HMF無法完全轉化,但5-HMF轉化率不受影響。

Lignocellulose is the most abundant biomass on Earth, and its cellulosic polysaccharide is suitable used as raw material for bioenergy production. To release polysaccharide from lignocellulose and further hydrolyze polysaccharide into simple sugar, pretreatment is necessary and beneficial for subsequent fermentation process. Thermal acid hydrolysis is extensively applied and econamic pretreatment method to deal with lignocellulosic biomasses, but inhibitors are inevitably formed during this process. 5-Hydroxymethylfurfural (5-HMF) is the main inhibitor compound produced, and other inhibitors, such as organic acids, furfural and phenols are also commonly generated during thermal acid hydrolysis. These inhibitors seriously influence downstream bioenergy production. Therefore, inhibitors removal is an important issue.
In 2004, the US Department of Energy announced 12 top biomass platform molecules for the sustainable future. 2,5-Furan-dicarboxylic acid (FDCA) is present in this list. FDCA can be obtained by 5-HMF biotransformation, and it can replace terephthalic acid (TA) to produce synthetic green plastic material, polyethylene-2,5- furandicarboxylate (PEF).
Compared with suspended cells, immobilized cells have several advantages. The adventages include easy solid-liquid separation, low separation cost, high cell density maintenance and toxic compounds resistance. Based on the connection between 5-HMF detoxification in lignocellulosic hydrolysates and FDCA production, our previous isolate strain Burkholderia cepacia H-2 capable of biotransforming 5-HMF into FDCA was used in this study. In order to evaluate the feasibility of the immobilized Burkholderia cepacia H-2 for 5-HMF biotransformation. First, 5-HMF biotransformation using suspended cells and immobilized cells was compared. Then, the optimal inoculum size and stability of immobilized cells were studied. Finally, the effects of various inhibitors/salinity and thier concentrations on 5-HMF biotransformation were investigated.
The results showed that the immobilized cells had better 5-HMF biotransformation and FDCA production efficiencies, and stable 5-HMF conversion at low pH. 1851 mg/L 5-HMF could be completely converted into FDCA within 32 hours. As increasing bacterial concentrations in the immobilized cells, 5-HMF biotransformation time was shortened. The optimal inoculum size in the immobilized cells was 175 mg/L (equal to O.D. 0.3). 1894 mg/L 5-HMF could be entirely biotransformed within 24 hours, and 1917 mg/L FDCA was received at the end of experiment. Immobilized cells with and without dead bacterial cells could adsorb 5-HMF and FDCA. As reuse cycles numbers of the immobilized cells increased, 5-HMF conversion efficiency decreased. 5-HMF conversion efficiency was higher than 75% after 16 reuse cycles.
The higher the formic acid concentration, the lower the 5-HMF conversion rate. 5-HMF conversion efficiency was not significantly affected as formic acid concentration was 3000 mg/L, but enhanced as formic acid concentration was lower than 1000 mg/L. When increasing formic acid concentration to 5000 mg/L, FDCA production and 5-HMF conversion efficiencies obviously declined. In addition, strain Burkholderia cepacia H-2 was capable of degrading formic acid. Acetic acid concentration lower than 4390 mg/L did not affect 5-HMF biotransformation and FDCA formation, and 5-HMF conversion efficiency was between 87~90%. High furfural concentration had a negative effect on 5-HMF conversion and FDCA generation rates. When furfural concentration was higher than 1000 mg/L, 2000 mg/L 5-HMF could not be completely converted. Besides, furfural was utilized by immobilized strain Burkholderia cepacia H-2. There was no significant effect of levulinic acid on 5-HMF biotransformation. Furthermore, strain Burkholderia cepacia H-2 could use levulinic acid as carbon source to support biomass growth. The higher the phenol concentration, the lower the 5-HMF conversion rate. However, phenol had no significant effect on 5-HMF conversion efficiency. With the increase of NaCl concentration, 5-HMF conversion and FDCA production rates both obviously decreased. When NaCl concentration was higher than 6%, 5-HMF could not be completely biotransformed, but 5-HMF conversion efficiency was not influenced.

目錄
摘要 i
Abstract iii
目錄 v
誌謝 ix
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1能源現況與因應 3
2.2生質能源及木質素纖維素生質物 4
2.2.1生質能源 4
2.2.2木質纖維素種類與組成 5
2.3木質纖維素前處理 9
2.3.1物理前處理 9
2.3.2化學前處理 10
2.3.3生物前處理 11
2.4熱酸水解木質纖維素產生之抑制物 14
2.4.2糠醛 17
2.4.3甲酸 17
2.4.4醋酸 17
2.4.5乙醯丙酸 18
2.4.6酚 18
2.5 5-HMF生物轉化介紹 18
2.5.1具5-HMF生物轉化能力之菌株 18
2.5.2影響5-HMF生物轉化之因子 21
2.5.2.1溫度 21
2.5.2.2 pH值 21
2.5.2.3初始5-HMF濃度 21
2.5.2.4 其他基質的效應(第二基質、產物與水解抑制物) 22
2.6 2,5-呋喃二羧酸(2,5-furan-dicarboxylic acid, FDCA) 22
2.6.1 FDCA合成途徑 23
2.6.2 FDCA應用 24
2.7 固定化細胞 25
2.7.1 固定化細胞技術 26
2.7.1.1 吸附法 28
2.7.1.2 交聯法 28
2.7.1.3 包埋法 28
2.7.1.4 複合固定法 29
2.7.2固定化載體 29
2.7.2.1有機載體 29
2.7.2.2 無機載體 29
2.7.2.3 複合載體 30
第三章 材料與方法 31
3.1 研究架構 31
3.2 藥品與儀器設備 33
3.3 菌種來源暨培養基 35
3.3.1 菌種來源 35
3.3.2 培養基 35
3.4 最佳植種菌株形態實驗 36
3.4.1懸浮態細胞 37
3.4.2固定化細胞 37
3.5固定化細胞條件建立與特性研究 39
3.5.1最適包埋菌量批次實驗 39
3.5.2固定化細胞之吸附測試 40
3.5.3固定化細胞之循環次數 40
3.6 不同水解抑制物對5-HMF轉化之影響 41
3.6.1 不同甲酸濃度 43
3.6.2 不同醋酸濃度 43
3.6.3 不同糠醛濃度 43
3.6.4 不同乙醯丙酸濃度 43
3.6.5 不同酚濃度 43
3.7 不同鹽濃度對5-HMF轉化之影響 44
3.8 分析方法 44
3.8.1 pH測定 44
3.8.2 OD測定 44
3.8.3 水解抑制物濃度分析 44
3.8.4 電導度測定 45
3.8.5 FDCA濃度分析 45
3.8.6 相關計算公式 45
第四章 結果與討論 47
4.1轉化5-HMF最佳菌株形態實驗結果 47
4.2 固定化細胞條件建立與特性研究 48
4.2.1最適包埋菌量批次實驗 48
4.2.2固定化細胞之吸附測試 50
4.2.3固定化細胞轉化5-HMF之穩定性 51
4.3 不同水解抑制物對5-HMF轉化之影響 53
4.3.1 不同甲酸濃度 53
4.3.2 不同醋酸濃度 58
4.3.3 不同糠醛濃度 62
4.3.4 不同乙醯丙酸濃度 66
4.3.5 不同酚濃度 70
4.3.6 綜合討論 73
4.4 不同鹽濃度對5-HMF轉化之影響 77
第五章 結論與建議 81
5.1 結論 81
5.2 建議 83
參考文獻 84


Alriksson, B. (2006). Ethanol from lignocellulose: alkali detoxification of dilute-acid spruce hydrolysates. Karlstad University, Chemistry and Biomedical Sciences.
Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification withreducing agents. Bioresource Technology, 102(2), 1254-1263.
Boopathy, R., Bokang, H. & Daniels, L. (1993). Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. Journal of Industrial Microbiology, 11(3), 147-150.
Baek, S.-C. & Kwon, Y. J. (2007). Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnology and Bioprocess Engineering, 12, 404-409.
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., & Saddler, J. (2007). Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Advances in Biochemical Engineering/Biotechnology, 108, 67–93.
Chandel, A. K., Kapoor, R. K., Singh, A. & Kuhad, R. C. (2007a). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950.
Cara, C., Ruiz, C., Ballesteros, M., Manzanares, P., Negro, M. J., & Castro, E. (2008). Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 87(6), 692–700.
Cao, G., Ren, N., Wang, A., Lee, D. J., Guo, W., Liu, B.,Feng, Y., & Zhao, Q. (2009). Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. international journal of hydrogen energy, 34(17), 7182-7188.
Casanova, O., Iborra, S., & Corma, A. (2009). Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2, 5-dimethylfuroate with gold on nanoparticulated ceria. Journal of Catalysis, 265(1), 109-116.
Chandel, A.K., da Silva1, S. S., & Singh, O. V. (2011). Detoxification of lignocellulosic hydrolysates for improved bioethanol production. Biofuel Production-Recent Developments and Prospects, Chapter 10.
Chandel, A. K., Singh, O. V., Chandrasekhar, G., Rao, L. V. & Narasu, M. L. (2011a). Bioconversion of novel substrate, Saccharum spontaneum, a weedy material into ethanol by Pichia stipitis NCIM3498. Bioresource Technology, 102(2), 1709-1714.
de Jong, E., Dam, M. A., Sipos, L. & Gruter, G-J. M. (2012). Furandicarboxylic acid (FDCA), a versatile building block for a veryinteresting class of polyesters. Biobased monomers, polymers, and materials, 1105, 1-13.
Gandini, A., Silvestre, A. J., Neto, C. P., Sousa, A. F., & Gomes, M. (2009). The furan counterpart of poly (ethylene terephthalate): An alternative material based on renewable resources. Journal of Polymer Science Part A: Polymer Chemistry, 47(1), 295–298.
Greetham, D., Hart, A.J., & Tucker, G.A. (2016). Presence of low concentrations of acetic acid improves yeast tolerance to hydroxymethylfurfural (HMF) and furfural. Biomass and Bioenergy, 85, 53-60.
Hartmeier, W. (1998). Immobilized Biocatalysts. Heidelberg New York﹐82-102.
Holladay, J. E., Bozell, J. J., White, J. F., & Johnson, D. (2007). Top value-added chemicals from biomass. DOE Report PNNL﹐16983.
Heer, D.,Heine, D., & Sauer,U. (2009). Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductases. Applied and Environmental Microbiology, 75(24), 7631–7638.
Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100(10), 2706–2711.
Hu, C., Zhao, X., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843-4847.
International Energy Agency (2016).
Junter, G.A. & Jouenne, T. (2011). Immobilized Viable Cell Biocatalysts: A Paradoxical Development. Comprehensive Biotechnology, Chapter 2.36.
Jeihanipour, A., Karimi, K., & Taherzadeh, M. J. (2011). Acid hydrolysis of cellulose-based waste textiles. The 7th International Chemical Engineering Congress & Exhibition, Kish, Iran, 21–24.
Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels , 6(1), 6-16.
Keweloh, H., Heipieper, H. J., & Rehm, H. J. (1989). Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied Microbiology and Biotechnology , 31(4), 383-389.
Kitchaiya, P., Intanakul, P., & Krairis, M. (2003). Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology, 23 (2), 217–225.
Kamm, B. (2007). Production of platform chemicals and synthesis gas from biomass. Angewandte Chemie International Edition, 46(27), 5056-5058.
Kumar, P., Barrett, D.M., Delwiche, M.J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729.
Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings of the National Academy of Sciences, 107(11), 4919-4924.
Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Efficient whole-cell biotransformation of 5- (hydroxymethyl) furfural into FDCA,2,5-furandicarboxylic acid. Bioresource Technology, 101(16), 6291-6296.
Lewkowski, J. (2001). Synthesis, chemistry and applications of 5-hydroxymethylfur-fural and its derivatives. ARKIVOC, 2001(i), 17-54.
López, M. J., Nichols, N. N., Dien, B. S., Moreno, J., & Bothast, R. J. (2004). Isolation of microorganisms for biological detoxification of lignocellulosic Hydrolysates. Applied Microbiology and Biotechnology, 64(1), 125-131.
Peng, L. U., Chen, L. J., Li, G. X., Shen, S. H., Wang, L. L., Jiang, Q. Y., & Zhang, J. F. (2007). Influence of furfural concentration on growth and ethanol yield of Saccharomyces kluyveri. Journal of Environmental Sciences, 19(12), 1528-1532.
Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., & Bell, A.T (2013). Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology, 135, 23–29.
Lee, C., Zheng, Y.,& VanderGheynst, J. S. (2015). Effects of pretreatment conditions and post-pretreatment washing on ethanol production from dilute acid pretreated rice straw. Biosystems Engineering, 137 , 36–42.
Lee, S. A.,Wrona, L. J.,Cahoon, A. B.,Crigler, J., Eiteman, M. A., & Altman, E. (2016). Isolation and Characterization of Bacteria That Use Furans as the Sole Carbon Source. Applied Biochemistry and Biotechnology, 178(1), 76-90.
Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G.H., & Ardjmand, M. (2013). Lignocellulosic biomass to biorthanol, a comprehensive review with a focus on pretreatment. Renewable &Sustainable Energy Review, 27, 77-93.
Morrish, J. L., & Daugulis, A. J. (2008). Inhibitory effects of substrate and product on the carvone biotransformation activity of Rhodococcus erythropolis. Biotechnology letters, 30(7), 1245-1250.
Menon, V. & Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science , 38(4), 522-550.
Maurya, D. P., Singla, A., & Negi , S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597–609.
Mishra, A., Sharma, A. K., Sharma, S., Bagai, R., Mathur, A. S., Gupta, R. P., & Tuli, D. K. (2016). Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor. Renewable Energy, 98, 57-63.
Nigam, J.N. (2001). Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. Journal of Biotechnology, 87(1), 17–27.
Palmqvist, E. & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25-33.
Pan, X. J., Gilkes, N., Kadla, J., Pye, K., Saka, S., & Gregg, D. (2006). Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnology and Bioengineering, 94(5) , 851–861.
Pai ,O., Banoth, L., Ghosh, S., Chisti, Y., & Banerjee, U. C. (2014). Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochemistry, 49(4), 655-659.
Papageorgioua, G. Z., Papageorgioub, D. G., Terzopoulouc, Z., & Bikiarisc, D. N. (2016). Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. European Polymer Journal, 83, 202–229.
Qian, M., Tian, S., Li, X., Zhang, J., Pan, Y., & Yang, X. (2006). Ethanol production from diluteacidsoftwood hydrolysate by co-culture. Applied Biochemistry and Biotechnology, 134(3), 273–284.
Rafiqul, I. S. M. & Sakinah Mimi, A. M., (2012). Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science, 71, 431–437.
Ra, C. H. , Jeong, G. T., Shin, M. K., & Kim, S. K. (2013). Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresource Technology, 140, 421–425.
Rajana, K. & Carrierb, D.J. (2014). Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass and Bioenergy, 62, 222–227
Rasika, L., Nilsson, K., Holmgren, M., Madavi, B., Robert, T., Nilsson, & Sellstedt, A. (2016). Adaptability of Trametes versicolor to the lignocellulosic inhibitors furfural, HMF, phenol and levulinic acid during ethanol fermentation. Biomass and Bioenergy, 90, 95-100.
Renewable energy Policy Network for the 21st century. Renewables 2014. Global Status Report (2016).
Stredansky, M., Conti, E., Bertocchi, C., Matulova M., & Zanetti F. (1998) Succinoglycan production by Agrobacterium tumefaciens. Fermentation and Bioengineering, 85(4), 398-403.
Sun, Y. & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.
Saha, B.C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279–291.
Singh, A., Pant, D., Korres, N. E., Nizami A. S., Prasad, S., & Murphy, J.D. (2010). Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresource Technology, 101(13), 5003–5012.
Saritha, M., Arora, A., & Lata (2012). Biological pretreatment of lignocellulosic substrate for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 52(2), 122–130
Soleimani, M. & Tabil, L. (2014). Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochemical Engineering , 82, 166-173.
Siqueira, M. R. & Reginatto, V. (2015). Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates. Renewable Energy, 80, 109-116.
Shimin, K. & Jian Y. (2016). An intensified reaction technology for high levulinic acid concentration from lignocellulosic biomass. Biomass and Bioenergy, 95, 214-220.
Trevors, J. T., Van Elsas, J. D., Lee, H., & Van Overbeek, L. S. (1992). Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases, 1, 61-69.
Thomas, S.M., DiCosimo, R., & Nagarajan, A. (2002). Biocatalysis: applications and potentials for the chemical industry. Trends in Biotechnology , 20(6), 238–242.
Tong, X., Ma, Y., & Li, Y. (2010).Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1), 1-13.
Taha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., & Ball, A. (2016). Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Current Opinion in Biotechnology, 38, 190–197.
Taskin, M., Ucar, M. H., Unver, Y., Kara, A. A., Ozdemir, M., & Ortucu, S. (2016). Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, 8, 97-103.
Van Zyl C., Prior B.A., & du Preez J.C. (1991). Acetic acid inhibition of D-xylose fermentation by Pichia stipites. Enzyme and Microbial Technology, 13(1), 82-86.
Villarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., & Silva, J. B. A. (2006). Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitolproduction by Candida guilliermondii. Enzyme Microbial Technology, 40(1), 17–24.
Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., & Patil, S. (2014). Bioethanol production: feedstock and current technologies. Environmental Chemical Engineering, 2(1), 573–584.
Vandyck, T., Keramidasa, K., Saveyna, B., Kitousa, A., Vrontisib, Z. (2016). A global stocktake of the Paris pledges: Implications for energy systems and economy. Global Environmental Change, 41, 46-63.
Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S., & Huang, C. Z. (2000). Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere, 41(12), 1873-1879.
Wang, K. & Sun, R. C. (2010). Chapter 7.5 – Biorefinery Straw for Bioethanol. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, 267-287.
Wierckx, N., Koopman, F., Ruijssenaars, H. & Winde, J. (2011). Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Applied Microbiology and Biotechnology, 92(6), 1095-1105.
Wierckx, N., Schuurman, T. D. E., Blank, L. M. & Ruijssenaars, H. J. (2015). Whole-Cell Biocatalytic Production of 2,5-Furandicarboxylic Acid. Microorganisms in Biorefineries, 207-223.
Wang, W., Ling, H., & Zhao, H. (2015). Steam explosion pretreatment of corn straw on xylose recoveryand xylitol production using hydrolysate without detoxification. Process Biochemistry, 50(10), 1623-1628.
Yu, J., & Stahl, H. (2008). Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource technology, 99(17), 8042-8048.
Yang, C.F. & Huang, C.R. (2016). Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate. Bioresource Technology, 214, 311-318.
Zhang, Y.H., Ding, S.Y., Mielenz, J.R., Cui, J.B., Elander, R.T., Laser, M., Himmel, M..E, McMillan, J.R., & Lynd, L.R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(3), 214–223.
Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68.
Zajkoska, P., Rebroš, M., & Rosenberg, M. (2013). Biocatalysis with immobilized Escherichia coli. Applied microbiology and biotechnology, 97(4), 1441-1455.
Zhang, J., Li, J., Tang, Y., Lin, L., & Long, M. (2015). Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate Polymers, 130, 420-428.
Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66(C), 751–774.
陳國誠 (1992) 微生物酵素工程學,藝軒圖書出版社,263-312。
馬萍、祝力、孫淑英、梁冬梅 (2003) 海藻酸鈣凝膠微球的製備和 pH 依賴性溶脹,中國海洋药物,5期。
呂順吉 (2004) 結合固定化細胞與顆粒污泥程序進行厭氧醱酵產氫,碩士論文,逢甲大學,化學工程系。
吳建一、鍾宛真、葉修鋒 (2006) 固定化酵素衍進與展望,化工年會,53(6),175-198。
吳柏昀 (2009) 探討 Aspergillus niger 利用甘蔗渣生產檸檬酸之研究,碩士論文,中央大學,化學工程與材料工程系。
张卉 (2010) 微生物工程,第二節 pH 對發酵的影響及控制,中国轻工业出版社。
林烱暐 (2010) 能源教育知識網-生質能應用原理http://www.enedu.org.tw/GreenEnergy/ge-4.phphttps://read01.com/J8x75L.html 於2017年3月13日藉網路瀏覽。
韓斌 (2011) 包埋法固定化微生物問题初探,百替生物,南開大學,環境科學系。
許惠如 (2011) 利用稻殼酸水解液生產生物絮凝劑-Schizophyllan glucan 之研究,碩士論文,中央大學,化學工程與材料工程系。
奚 悦、焦姮、刘小宇 (2013) 固定化細胞技術及其應用研究進展,生命的化學,33(5),576-580。
經濟部能源局 (2015) 104年年報。
萬皓鵬 (2014) 生質物─後化石世代的重要能源與工業原料,科學發展,497, 52-59,於2017年3月13日藉網路瀏覽。
陳偉珉 (2014) 稻草經微波鹼處理與同步糖化共發酵生產乳酸之探討,碩士論文,明新科技大學,化學工程與材料科技系。
行政院農業委員會 (2015) 農業廢棄物統計。
李志强、费本华、江泽慧 (2015) 發酵抑制物對葡萄糖發酵產乙醇之影響,化工進展,34,80-84。
黃啟睿 (2015) 利用微生物將藻類酸水解衍生物5-hydroxy-methylfurfural (5-HMF)轉化為 2,5-furan-dicarboxylicacid (FDCA)之研究,碩士論文,國立雲林科技大學,環境與安全衛生工程系。
環保節能網訊 (2016) 固定化微生物技術及其處理廢水機制的研究進展https://read01.com/J8x75L.html 於2016年9月13日藉網路瀏覽。
黃承鈞 (2016) 呋喃系生質聚酯料於阻氣包裝材料之應用與發展趨勢,工業材料雜誌,353期。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top