|
[1] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. In Computer Vision and Pattern Recogni- tion, 2009. CVPR 2009. IEEE Conference on, pages 983 –990, june 2009. [2] T. F. Cox and M. A. A. Cox. Multidimensional Scaling, Second Edi- tion. Chapman and Hall/CRC, 2 edition, Sept. 2000. [3] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learn- ing. In Proceedings of the 24th international conference on Machine learning, ICML ’07, pages 193–200, New York, NY, USA, 2007. ACM. [4] O. Danielsson, B. Rasolzadeh, and S. Carlsson. Gated classifiers: Boosting under high intra-class variation. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2673 –2680, june 2011. [5] E. W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numerical Mathematics, 1:269–271, 1959. [6] R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary environments. Neural Networks, IEEE Transactions on, 22(10):1517 –1531, oct. 2011. [7] Y. Freund and R. E. Schapire. A short introduction to boosting. In In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 1401–1406. Morgan Kaufmann, 1999. [8] H. Grabner and H. Bischof. Online boosting and vision, 2006. [9] H. Kleiman. The floyd-warshall algorithm, the ap and the tsp, part ii. CoRR, math.CO/0112052, 2001. [10] R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intell. Data Anal., 8(3):281–300, Aug. 2004. [11] N. D. Lawrence and J. C. Platt. Learning to learn with the informa- tive vector machine. In Proceedings of the twenty-first international 41conference on Machine learning, ICML ’04, pages 65–, New York, NY, USA, 2004. ACM. [12] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data Eng., 22:1345–1359, October 2010. [13] M. Scholz and R. Klinkenberg. Boosting classifiers for drifting con- cepts. Intell. Data Anal., 11(1):3–28, Jan. 2007. [14] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geo- metric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. [15] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In In NIPS. MIT Press, 2006. [16] Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1855 –1862, june 2010. [17] I. Zliobaite. Learning under concept drift: an overview. CoRR, abs/1010.4784, 2010.
|