|
1. U.S. Department of Health and Human Services. Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: U.S. Department of Health and Human Services, Office of the Surgeon General, 2004. Available from: http://www.ncbi.nlm.nih.gov/books/NBK45502/ 2. Johnell, O.; Kanis J. A., An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International. 2006, 17(12), 1726-1733. 3. Joseph Melton, L.; Chrischilles, Elizabeth A.; Cyrus Cooper; Lane, Ann W.; Lawrence Riggs, B., Perspective How Many Women Have Osteoporosis? Journal of Bone and Mineral Research. 2009, 7(9), 1005-1010. 4. Seeley, D.G.; Browner, W.S.; Nevitt, M.C.; Genant, H.K.; Scott, J.C.; Cummings, S.R., Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1991, 115(11), 837-842. 5. Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G., Bone substitutes in orthopaedic surgery from basic science to clinical practice. Journal of Materials Science Materials in Medicine. 2014, 25(10), 2445-2461. 6. Ikeda, T.; Nakamura, T.; Fujimoto, T.; Kikuchi, T.; Takagi, K., Morbidity at Iliac Bone Graft Donor Sites. Orthopedics & Traumatology, 2000, 49(3), 666-668. 7. Guthoff, R.; Katowitz, J. A., Risk of Infectious Disease Transmission Through Use of Allografts. Oculoplastics and Orbit (Essentials in Ophthalmology), 2006, 3-18. 8. Yeni, Y.N.; Brown, C.U.; Norman, T.L., Influence of Bone Composition and Apparent Density on Fracture Toughness of the Human Femur and Tibia. Bone, 1998, 22(1), 79-84 9. Woodard, H.Q., The Elementary Composition of Human Cortical Bone. Health Physics, 1962, 8(5), 513-517 10. Gong, J.K.; Arnold, J.S.; Cohn, S.H., The Anatomical Record, 1964, 149(3), 325–331 11. Krejci I.; Albert, P.; Lutz, F., The Influence of Antagonist Standardization on Wear. Journal of Dental Research, 1999, 78(2), 713–719. 12. Landis, W.J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone, 1995, 16(5), 533-544. 13. Baohua, Ji. Huajian, Gao., Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52(9), 1963-1990. 14. Jäger, I.; Fratzl, P., Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles. Biophysical Journal, 2000, 79(4), 1737-1746. 15. Orlovskii,V.P.; Komlev, V.S.; Barinov, S.M., Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorganic Materials, 2002, 38(10), 973–984. 16. Hirsch, C.; Evans, F.G., Studies On Some Physical Properties of Infant Compact Bone. Acta Orthopaedica Scandinavica, 1965, 35(1-4), 300-313. 17. Bandyopadhyay-Ghosh, S., Bone as a Collagen-hydroxyapatite Composite and its Repair. Trends Biomater. Artif. Organs, 2008, 22(2), 116-124. 18. Albrektsson, T.; Johansson, C., Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 2001, 10(0), S96-S101. 19. Barradas, A.M.C.; Yuan, H.; van Blitterswijk, C.A.; Habibovic, P., Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. European Cells and Materials, 2011, 21, 407-429. 20. Matassi, F.; Nistri, Lorenzo.; Paez, D.C.; Innocenti, M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab, 2011, 8(1), 21-24. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230919/?report=classic 21. Wang, F.; Wang, L.; Feng, Y.; Yang, X.; Ma, Z.; Shi, L.; Ma, X.; Wang, J.; Ma, T.; Yang, Z.; Wen, X.; Zhang, Y.; Lei, W., Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Scientific Reports, 2018, 8(1). 22. Venkatesan, J.; Nithya, R.; Sudha, P.N.; Kim, S.K., Role of Alginate in Bone Tissue Engineering. Advances in Food and Nutrition Research, 2014, 73, 45-57. 23. Zhang, Y.; Chu, D.; Zheng, M.; Kissel, T.; Agarwal, S., Biocompatible and degradable poly(2-hydroxyethyl methacrylate) based polymers for biomedical applications. Polymer Chemistry, 2012, 3(10), 2752. 24. Kattimani, V.S.; Kondaka, S.; Lingamaneni, K.P.; Hydroxyapatite—Past, Present, and Future in Bone Regeneration. Bone and Tissue Regeneration Insights, 2016, 7, 9-19. 25. Klempner, D.; Sperling, L.H.; Utracki, L.A., Interpenetrating Polymer Networks: An Overview. Interpenetrating Polymer Networks (Advances in Chemistry), 1994, 239, 3-38. 26. Dragan, E.S., Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 2014, 243, 572-590. 27. Naficy, S.; Kawakami, S.; Sadegholvaad, S.; Wakisaka, M.; Spinks, G.M., Mechanical properties of interpenetrating polymer network hydrogels based on hybrid ionically and covalently crosslinked networks. Journal of Applied Polymer Science, 2013, 130(4), 2504-2513. 28. Kausar, A.; Polyurethane/Epoxy Interpenetrating Polymer Network. Aspects of Polyurethanes, 2017. 29. Kebede, M.A.; Asiku, K.S.; Imae, T.; Kawakami, M.; Furukawa, H.; Wu, C.M., Stereolithographic and molding fabrications of hydroxyapatite-polymer gels applicable to bone regeneration materials. Journal of the Taiwan Institute of Chemical Engineers. 2018, 92, 91-96. 30. Gulsen, G.; Chauhan, A. Effect of water content on transparency, swelling, lidocaine diffusion in p-HEMA gels. Journal of Membrane Science, 2006, 269(1-2), 35-48. 31. Jang, H.L.; Lee, H.K.; Jin, K.; Ahn, H.Y; Lee, H.E;, Nam, K.T, Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. Journal of Materials Chemistry B, 2015, 3(7), 1342-1349. 32. Gleeson, J.P.; Plunkett, N.A; O’Brien, F.J; Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. European Cells and Materials, 2010, 20, 218-230.
|