跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭彥廷
研究生(外文):Kuo,Yen-Ting
論文名稱:藉由修飾濺鍍氮化鋁緩衝層在圖形化藍寶石基板上以改善氮化鎵品質
論文名稱(外文):Improved GaN quality by modifying sputter AlN buffer layer on pattern sapphire substrate
指導教授:吳耀銓
指導教授(外文):Wu, Yew-Chung
口試委員:潘扶民林博文
口試委員(外文):Pan, Fu-MingLin, Bo-Wen
口試日期:2017-10-30
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:40
中文關鍵詞:圖形化藍寶石基板氮化鋁
外文關鍵詞:pattern sapphire substrateAlN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
發光二極體(light emitting diodes ,LEDs)近年來逐漸取代傳統的日熾燈泡,主要是因為LED的體積小、壽命長及發光效率高等優點,常見於汽車頭燈、螢幕面板、交通號誌燈等日常用品。而目前最常被使用來做LED的材料為氮化鎵(GaN),但由於氮化鎵缺乏本身基板因此多半利用藍寶石基板來磊晶氮化鎵,不過由於兩者之間存在著晶格不匹配與熱膨脹係數差異,因此常在磊晶的過程中產生許多缺陷使得內部量子效率(IQE)下降。常用的改善方法有讓藍寶石基板圖形化使差排彎曲並增加表面粗糙度改變光線路徑,可使內部量子效率與光取出率(LEE)提高,或是利用緩衝層來降低晶格不匹配。 而在本實驗中利用濺鍍氮化鋁做為緩衝層,並利用KOH去進行蝕刻,再磊晶氮化鎵並做分析,在實驗中發現直接用KOH進行蝕刻的試片,氮化鎵的磊晶品質會隨著蝕刻時間增加而下降,這主要是因為底部氮化鋁緩衝層的厚度會隨著蝕刻時間的增加而減少,當底部的氮化鋁緩衝層越薄時,氮化鎵越容易成長於PSS的側壁,導致磊晶品質變差。
因此我們又設計了另一實驗,保護底部的氮化鋁緩衝層不受KOH的蝕刻,實驗的結果也順利的得到了只從底部成長,側壁幾乎沒有氮化鎵成長的試片,而磊晶品質也因而得到改善,這也符合了我們預期的利用改變氮化鋁緩衝層位置可以改善
II
氮化鎵磊晶品質,同時我們也利用聚焦離子束系統(Focus Ion Bean, FIB)來觀察不同位置的氮化鎵之磊晶速率,並加以探討。
Light emitting diodes(LEDs) have been replaced incandescent-filament lamp due to their advantages of small size、long lifetime and high efficiency. There are a lot of applications such as car headlight, screen panel and traffic lights. The material of LEDs is GaN, but GaN is lack of own’s substrate. As a result, we usually use sapphire as substrate to epitaxy GaN. There are still many problems between sapphire and GaN such as lattice mismatch and thermal expansion coefficient difference, which will make defects duing epitaxial growth and degrade internal quantumefficiency(IQE). So the solution we use is pattern sapphire substrate(PSS) which can make dislocation bending and change optical path. It will improve IQE and light extraction efficiency(LEE). Another solution is using buffer layer to decrease lattice mismatch.
In this experiment we use sputter AlN buffer layer and etch directly with KOH. Then, we epitaxy GaN and analysis. In the experiment, we discover that the quality of GaN become worse while we increase the KOH etching time. This is because the thickness of bottom AlN buffer layer become thinner while we increase the KOH etching time. As the thickness of bottom AlN buffer layer become thinner, the GaN
IV
grow on sidewall of PSS became easier. Then the quality of GaN become worse. We design another experiment to protect bottom AlN buffer layer from KOH etching. In this experiment we grow GaN on bottom of PSS successfully with a little GaN on sidewall. This result adjust to our expectation that changing sputter AlN buffer layer place on PSS can improve GaN quality,and we also useFocus Ion Bean (FIB) to observe GaN epitaxy rate.
摘要.................................................................................................................................I
Abstract........................................................................................................................III
致謝..............................................................................................................................V
目錄............................................................................................................................VII
圖目錄..........................................................................................................................IX
表目錄..........................................................................................................................XI

一、 序論........................................................................................................................1
1.1 LED簡介..............................................................................................................1
1.2 LED理論..............................................................................................................2
1.2.1 LED發光原理............................................................................................2
1.2.2 LED發光機制............................................................................................3
1.2.3 LED轉換效率............................................................................................4
1.3 藍寶石基板..........................................................................................................5
1.3.1圖形化藍寶石基板.....................................................................................9
1.4緩衝層(buffer layer)介紹...................................................................................11
二、 利用氫氧化鉀蝕刻圖形化藍寶石基板上的氮化鋁之研究..............................13
2.1研究動機............................................................................................................13
2.2 Etch AlN on PSS................................................................................................15
2.2.1直接利用氫氧化鉀蝕刻圖形化藍寶石基板上的氮化鋁(directly etch AlN on PSS) ................................................................................................................15
2.2.2利用氫氧化鉀製作底部氮化鋁在圖形化藍寶石基板(Bottom AlN on PSS etched by KOH) ...................................................................................................16
2.3結果與討論........................................................................................................17

2.3.1磊晶短時間...............................................................................................17
2.3.2磊晶LED全結構.......................................................................................30
2.3.3LED chip....................................................................................................30
2.4光電性分析........................................................................................................30
2.5結論..............................................................................................................34
三、總結........................................................................................................................35
四、未來工作..............................................................................................................36
五、參考文獻..............................................................................................................37
1. Round, H.J., Electrical world Vol. 49. 1907: [New York McGraw-Hill Pub. Co.,
etc.].
2. Holonyak, N. and S.F. Bevacqua, COHERENT (VISIBLE) LIGHT EMISSION
FROM Ga(As1−xPx) JUNCTIONS. Applied Physics Letters, (1962). 1(4): pp.
82-83.
3. Amano, H., et al., Metalorganic vapor phase epitaxial growth of a high quality
GaN film using an AlN buffer layer. Applied Physics Letters,(1986). 48(5):
pp.353-355.
4. Nakamura, S., et al., High-brightness InGaN blue, green and yellow
light-emitting diodes with quantum well structures. JAPANESE JOURNAL OF
APPLIED PHYSICS PART 2 LETTERS, (1995). 34: pp. L797-L799.
5. 陳建誌,“圖案化藍寶石基板表面形貌對氮化鎵系發光二極體的影響",國立
交通大學,博士論文,民國103 年8 月,pp.06274897.
6. 郭浩中,賴芳儀,郭孚義,LED 原理與應用,五南出版,二版3-8 (2012),pp.80.
7. N.F. Gardner, H.C. Chui, E.I. Chen, M.R. Krames, J.-W. Huang, F.A.Kish, et al.,
1.4× efficiency improvement in transparent-substrate (Al xGa 1−x ) 0.5 In 0.5
Plight-emitting diodes with thin (≤2000 Å) active regions, Appl. Phys. Lett. 74
(1999),pp.2230.
8. Jr. W. Shockley and W. T. Read, A model for the field and temperature
dependence of Shockley-Read-Hall lifetime in silicon,Phys. Rev. 87,
No.835(1952),pp.1585.
9. E.R. Dobrovinskaëiìa, L.A. Lytvynov, V.V. Pishchik, Sapphire: material,
manufacturing, applications, Springer (2009),pp.58.
10. 陳俞中,“濕蝕刻藍寶石圖形化基板形貌演化對氮化鎵磊晶的影響",國立交
38
通大學,博士論文,民國103年3月
11. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J.P. Ibbetson, et al., High-quality coalescence of laterally overgrown GaN stripes on GaN/sapphire seed layers, Appl. Phys. Lett. 75 (1999) ,pp.1706.
12. H. Miyake, A. Motogaito, K. Hiramatsu, Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys. 38 (1999),pp.1000.
13. T. Nishinaga, T. Nakano, S. Zhang, Epitaxial lateral overgrowth ofGaAs by LPE, Jpn. J. Appl. Phys. 27 (1988),pp.964.
14. D.J. Park, J.Y. Lee, H.-K. Cho, C.-H. Hong, H.S. Cheong, Dislocation
15. reduction in GaN epilayers by maskless pendeo-epitaxy process,J.Korean.Phys.Soc. 45 (2004) ,pp.1253.
16. A.M. Roskowski, E.A. Preble, S. Einfeldt, P.M. Miraglia, J.Schuck,R.Grober,et al., Reduction in dislocation density and strain in GaN thin films grown via maskless pendo-epitaxy,OPTO-ELECTRON.REV. 10 (2002) ,pp.261.
17. T.S. Zheleva, W.M. Ashmawi,K.A. Jones, Pendeo-epitaxy versus lateral epitaxial overgrowth of GaN: A comparative study via finite element analysis, Phys. Stat. Sol. (a). 176 (1999) ,pp.545.
18. T.S. Zheleva, S.A. Smith, D.B. Thomson, K.J. Linthicum, P. Rajagopal, R.F. Davis, Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films, J. Electron. Mater. 28 (1999),pp.5.
19. J.N. Kuznia, M.A. Khan, D.T. Olson, R. Kaplan, J. Freitas, Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates, J. Appl. Phys. 73 (1993) ,pp.4700.
20. S. Nakamura, GaN growth using GaN buffer layer, Jpn. J. Appl. Phys. 30 (1991),pp.1705.
39
21. K. Uchida, K. Nishida, M. Kondo, H. Munekata, Epitaxial growth of GaN layers with double-buffer layers, J.Cryst.Growth. 189 (1998),pp. 270.
22. M.S. Yi, H.H. Lee, D.J. Kim, S.J. Park, D.Y. Noh, C.C. Kim, et al., Effects of growth temperature on GaN nucleation layers, Appl. Phys. Lett. 75 (1999) ,pp.2187.
23. S. S. Schad et al.The study and fabrication of vertical structure GaN-based light-emitting diodes with a reflection mirror layer “Phys. Stat. Sol.(a)” 188 (2001),pp.127.
24. T. Fujii,Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamuraa,Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,Appl. Phys. Lett. 84 (2004), pp.855.
25. R. H. Horng et al.Characterization of Large-Area AlGaInP/Mirror/Si Light-Emitting Diodes Fabricated by Wafer Bonding,“Jpn, J. Appl. Phys.43, No.5A(2004),pp.2510.
26. J. J. Wierer et al. High-power AlGaInN flip-chip light-emitting diodes “Appl. Phys.Lett.78 ,No.22 (2001),pp.3379.
27. W.C.Lai,C.H.Yen,Y.Y.Yang,C.K.Wang,S.J.Chang,GaN-Based Ultraviolet Light Emitting Diodes With Ex Situ Sputtered AlN Nucleation Layer,J.DisplayTechnol9(2013) ,pp.895–899.
28. C.H.Yen,W.C.Lai,Y.Y.Yang,C.K.Wang,T.K.Ko,S.J.Hon,S.J.Chang, GaN-Based Light-Emitting Diode With Sputtered AlN Nucleation Layer,IEEEPhoton.Technol.Lett24(2012) ,pp.294–296.
29. C.H. Chiu , Y.W. Lin , M.T. Tsai , B.C. Lin , Z.Y. Li , P.M. Tu , S.C. Huang , Earl Hsu , W.Y. Uen , W.I. Lee , H.C. Kuo, Journal of Crystal Growth 414 (2015) , pp.258–262.
40
30. 謝承佑, “利用奈米圖形化藍寶石基板改善氮化鎵品質以及成長半極性氮化鎵於a面圖形化藍寶石基板",國立交通大學,博士論文,民國101年11月,pp.23.
31. http://www.ee.sc.edu/personal/faculty/simim/ELCT871/05%20MOCVD.pdf
32. Li-Chuan Chang, Yu-An Chen, and Cheng-Huang Kuo , Spatial Correlation Between Efficiency and CrystalStructure in GaN-Based Light-Emitting DiodesPrepared on High-Aspect Ratio Patterned SapphireSubstrate With Sputtered AlN Nucleation Layer ,IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 7, JULY (2014) ,pp.2443-2447.
33. http://www.semiconductors.co.uk/nitrides.htm#AlN
34. J.H. Yang , S.M. Kang , D.V. Dinh , D.H. Yoon , Thin Solid Films 517 (2009) 5057–5060
35. D. Zhuang, J.H. EdgarWet etching of GaN, AlN, and SiC: a reviewMaterials Science and Engineering R 48 (2005) ,pp.01–46.
36. J.D. Plummer, M. Deal and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, 1st ed., Prentice Hall, New Jersey, 514(2000).
37. D.D. Ebbing, General Chemistry, 5th ed., Princeton, New Jersey,545(1996).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top