跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭弘裕
研究生(外文):Hung-Yu Kuo
論文名稱:基於RGB-D之影像分割方法
論文名稱(外文):Image Segmentation from RGB-D Data
指導教授:杜維昌杜維昌引用關係
指導教授(外文):Wei-Chang Du
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:41
中文關鍵詞:影像分割深度攝影機RGB-D影像超像素
外文關鍵詞:image segmentationdepth cameraRGB-D imagesuperpixel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
影像分割技術是電腦視覺最重要的基礎之一,舉凡圖像檢索、圖形辨識、機器視覺等領域,要先有好的分割技術才能有效進行後續的檢索與辨識工作。傳統的影像分割方法主要根據影像中的彩色資訊為基礎,但隨著平價RGB-D攝影機日益普及,讓我們有了新的影像分割方式。本文採用Kinect攝影機所得到的彩色與深度資訊搭配來進行影像分割,首先對彩色影像進行初步分割,接著使用彩色搭配深度資訊來作鄰近區塊的合併以得到最終的分割成果。藉由深度資訊來彌補以往只單靠顏色作分割的不足,並得到效果合宜的成果。
Image segmentation is one of the most important foundations of computer vision. In many applications such as image retrieval, pattern recognition, machine vision and related fields, it is necessary to have a good segmentation technology to facilitate the follow-up retrieval and recognition work. Traditional image segmentation methods are mainly based on the color information in images. With the growing popularity of cheap RGB-D cameras, let us have a new method to do image segmentation. This study uses Kinect camera to get color and depth information for image segmentation. First, image is initially segmented according to color information, followed by the use of color and depth information for the merge of adjacent blocks to get the final segmented results. Use the depth information to make up for the past only color for the lack of segmentation to get the effect of appropriate results.
目 錄 I
圖目錄 III
表目錄 IV
誌謝 V
摘要 VI
Abstract VII
Chapter 1 簡介 1
1.1 研究背景 1
1.2 研究動機與目的 3
Chapter 2 文獻探討 4
2.1 Kinect感測原理 4
2.2 RGB影像分割方法 6
2.2.1分水嶺分割法 6
2.2.2區域生長法 8
2.2.3分離與合併區域分割法 9
2.2.4顏色重心和彩色圖像聚類分割法 10
2.2.5 K-means和人工魚群算法應用於圖像分割法 11
2.2.6 超像素分割方法 11
2.3 RGB-D影像分割方法 14
2.3.1 圖像標記分水嶺分割法 14
2.3.2多層聚類圖像分割法 15
Chapter 3 研究方法與步驟 16
3.1 色彩空間轉換 17
3.2 K-means分群 18
3.3 區塊合併 20
Chapter 4 實驗結果 22
Chapter 5 結論與未來展望 29
參考文獻 30
[1]郭慶銳、許建龍、孫樹森、何雲,基於顏色重心和K-means的彩色圖像聚類分割演算法,浙江理工大學學報,第27卷,第4期,580-584頁,2010年。
[2]楚曉麗,K-means聚類演算法和人工魚群演算法應用於圖像分割技術,計算機系統應用,第22卷,第4期,92-94頁,2013年。
[3]M. C. Yang, X. B. Lu and Q. B. Zhou, “Image Segmentation Algorithm Based on Incomplete K-means Clustering and Category Optimization,” Journal of Computer Applications, vol. 32, no. 1, pp. 248-251, 2012.
[4]余燁、李冰飛、張小魏、劉宜萍、李海琴,面向RGBD圖像的標計分水嶺分割,中國圖像圖形學報,第21卷,第2期,145-154頁,2016年。
[5]Mahfuzur Rahman Khan, ABM Muhitur Rahman, G.M Atiqur Rahamany and Md Abul Hasnat, “Unsupervised RGB-D Image Segmentation by Multi-layer Clustering,” International Conference on Informatics, Electronics and Vision (ICIEV), pp. 719-724, 2016.
[6]L. Cruz, D. Lucio and L. Velho, “Kinect and RGBD Images: Challenges and Applications,” IEEE Conference on Graphics, Patterns and Images, pp. 36-49, 2012.
[7]Kinect, www.cnblogs.com/TracePlus/p/4136297.html, 2014.
[8]鍾國亮,影像處理與電腦視覺,東華書局第5版,2010年。
[9]Region growing,http://blog.csdn.net/bagboy_taobao_com/article/details/5666091, 2010
[10]Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk, “SLIC Superpixels Compared to Stat-of-the-Art Superpixel Methods,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274-2280, 2012
[11]彩色影像與深度影像之位置對齊, http://kheresy.wordpress.com/2011/01/21/combine_depth_and_image_from_kinect/, 2011.
[12]Lab color space, http://zh.wikipedia.org/wiki/Lab色彩空間, 2016
[13]K-means clustering, http://zh.wikipedia.org/wiki/K-平均算法, 2017
[14]Liangqiong Qu, Shengfeng He, Jiawei Zhang, Jiandong Tian, Yandong Tang, and Qingxiong Yang, “RGBD Salient Object Detection via Deep Fusion,” IEEE Transactions on Image Processing, vol. 26, no. 5, pp. 2274-2284, MAY 2017.
[15]Jingyu Yang, Ziqiao Gan, Kun Li and Chunping Hou, “Graph-based Segmentation for RGB-D Data Using 3D Geometry Enhanced Superpixels,” IEEE Transactions on Cybernetics, vol. 45, no. 5, pp. 913-926, 2015.
[16]K. Krishna and M. N. Murty, “Genetic K-means Algorithm,” IEEE Transactions on Systems, Man., and Cybernetics—Part B: Cybernetics, vol. 29, no. 4, pp. 433-439, 1999.
[17]Max Mignotte, “Segmentation by Fusion of Histogram-based K-means Clusters in Different Color Spaces,” IEEE Transactions on Image Processing, vol. 17, no. 5, pp. 780-787, 2008.
[18]張桂梅、周明明、馬珂,基於彩色模型的重構標記分水嶺分割算法,中國圖像圖形學報,第17卷,第5期,641-647頁,2012年。
[19]Dirk Holz, Stefan Holzer, Radu Bogdan Rusu and Sven Behnke, “Real-Time Plane Segmentation Using RGB-D Cameras,” Robot Soccer World Cup XV, LNCS 7416, pp. 306-317, 2012.
[20]Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus, “Indoor Segmentation and Support Inference from RGBD Images,” Computer Vision – ECCV, pp. 746-760, 2012.
[21]Saurabh Gupta, Pablo Arbelaez and Jitendra Malik, “Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 564-571, 2013.
[22]Camille Couprie, Cl´ement Farabet, Laurent Najman and Yann LeCun, “Indoor Semantic Segmentation Using Depth Information,” First International Conference on Learning Representations (ICLR), pp. 1-8, 2013.
[23]Zhenguo Li, Xiao-Ming Wu and Shih-Fu Chang, “Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach,” Computer Vision and Pattern Recognition (CVPR), pp. 789-796, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊