跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 23:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周子傑
研究生(外文):Zi-Jie Zhou
論文名稱:氣懸微粒過濾材料特性與效能評估
論文名稱(外文):Characteristics and Performance Evaluation of Airborne Particle Filter
指導教授:曾昭衡曾昭衡引用關係
口試委員:洪明瑞薛人瑋曾昭衡
口試日期:2018-07-03
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:聚丙烯聚四氟乙烯玻璃纖維空氣過濾懸浮微粒
外文關鍵詞:PolypropylenePolytetrafluoroethyleneGlass fiberair filterparticulate matter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
  本研究評估常見的過濾材料玻璃纖維(Glass fiber)、聚四氟乙烯(Polytetrafluo-roethylene, PTFE)、聚丙烯(Polypropylene, PP)及兩種市售聚丙烯濾材的特性及過濾效能。分析過濾材料的表面特徵、帶電及填充密度等,纖維直徑與孔徑大小有相應的關係為PTFE<Glass fiber<PP。量測濾材的表面電壓,Glass fiber及PTFE幾乎不帶靜電;PP濾材通常為靜電駐極體,負電電暈放電進行充電後皆能保有約-0.30 kV穩定的表面電壓。評估各過濾材料的效能,Glass fiber及PFFE濾材於測試風速0.10 m/s時壓損約為500~600 Pa,PP濾材壓損相對非常低僅有30~80 Pa。所有濾材皆有良好的過濾表現,其中PTFE濾材平均過濾效率99.067%為最佳,Glass fiber濾材平均過濾效率為98.234%、PP濾材平均過濾效率介於95.836-98.732%;去除靜電後PP濾材過濾效率皆明顯降低,下降幅度在20~60%不等。以單纖維過濾效率模式計算各種微粒收集機制對濾材整體效率的貢獻程度,氣膠微粒尺寸在次微米時擴散作用為主要收集機制,重力沉降機制於測試粒徑範圍的貢獻非常低甚至可以忽略。過濾品質是最常用來評估濾材效能的方法,包括壓力損失及過濾效率兩個重要因素,於表面風速10 cm/s時Glass fiber、PTFE、PP-M、PP-S及PP-P濾材的平均過濾品質分別為0.007(1/ Pa)、0.009(1/ Pa)、0.1495(1/ Pa)、0.0642(1/ Pa)及0.0487(1/ Pa),去除濾材靜電後Glass fiber及PTFE濾材的過濾品質不變,PP-M、PP-S及PP-P濾材的平均過濾品質分別降為0.017(1/ Pa)、0.03(1/ Pa)及0.02(1/ Pa)。雖然原始濾材中PP有較高的過濾品質,但仍需考量隨著微粒聚積及長時間的使用,靜電吸附逐漸失去作用而導致效能降低及使用壽命縮短。
This study evaluated the characteristics and filtration performance of common filter materials Glass fiber, polytetrafluoroethylene, polypropylene, and two commercially available polypropylene filters. Analyze the surface characteristics, charge, and packing density of the filter material. The fiber diameter and pore size have a corresponding relationship: PTFE<Glass fiber<PP. The surface voltage of the filter medium is measured, and Glass fiber and PTFE are hardly electrostatic; the PP filter medium is usually an electret electret, which can maintain a stable surface voltage of about -0.30 kV after charging by negative electric corona discharge. Evaluating the performance of each filter material, Glass fiber and PFFE filter media have a pressure loss of approximately 500 to 600 Pa at a test air velocity of 0.10 m/s, and PP media have a relatively low pressure loss of only 30 to 80 Pa. All filter media have good filtration performance, of which the average filtration efficiency of PTFE filter is 99.067%, the average filtration efficiency of Glass fiber filter is 98.234%, the average filtration efficiency of PP filter is between 95.836-98.732%; the filter efficiency of PP filter after removing static electricity Both are significantly lower, ranging from 20 to 60%. The contribution of various particle collection mechanisms to the overall efficiency of the filter was calculated using the single-fiber filtration efficiency model. The diffusion of the aerosol particles at submicron size was the main collection mechanism, and the contribution of the gravity sedimentation mechanism to the test particle size range was very low or even negligible. Filtration quality is the most commonly used method to evaluate the effectiveness of filter media, including two important factors of pressure loss and filtration efficiency. When the surface wind speed is 10 cm/s, the average of Glass fiber, PTFE, PP-M, PP-S and PP-P filter media The filtration quality was 0.007 (1/Pa), 0.009 (1/Pa), 0.1495 (1/Pa), 0.0642 (1/Pa), and 0.0487 (1/Pa), respectively. Filtering of the Glass fiber and PTFE filter was performed after removing the filter material static electricity. With the same quality, the average filter quality of PP-M, PP-S and PP-P filters was reduced to 0.017 (1/Pa), 0.03 (1/Pa) and 0.02 (1/Pa), respectively. Although PP in the original filter media has high filtration quality, it still needs to be considered. With the accumulation of particles and long-term use, electrostatic adsorption gradually loses its effect, resulting in reduced performance and shortened service life.
摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2研究目的 1
1.3研究流程與架構 3
第二章 文獻回顧 4
2.1室內懸浮微粒 4
2.2室內懸浮微粒潔淨技術 6
2.3 HEPA濾網的常見的濾材 7
2.3.1玻璃纖維(Glass fiber) 7
2.3.2聚四氟乙烯(Polytetrafluoroethylene, PTFE) 9
2.3.3 聚丙烯(Polypropylene, PP) 10
2.4過濾理論 12
2.5氣懸微粒濾材之過濾研究彙整 15
第三章 研究方法 20
3.1 研究流程 20
3.2 氣懸微粒過濾材料樣品 21
3.2.1氣懸微粒過濾材料基本特性 22
3.2.2氣懸微粒過濾材料充電與表面電壓量測 23
3.3實驗儀器設備 24
3.3.1過濾測試儀器設備 24
3.3.2分析及量測設備 26
3.4 實驗系統及測試流程 28
3.4.1微粒產生源 29
3.4.2過濾測試系統 30
3.4.3壓力損失評估 30
3.4.4微粒濃度及系統穩定度 31
3.5理論分析 32
3.5.1機械過濾機制 32
3.5.2理論壓降與實際壓降 37
3.5.3過濾品質 37
第四章 結果與討論 38
4.1 過濾材料基本特性 38
4.1.1表面特徵與纖維型態 38
4.1.2過濾材料孔徑分析 43
4.1.3過濾材料之表面電壓及穩定性 44
4.1.4過濾材料特性 47
4.2過濾材料效能 49
4.2.1過濾材料壓力損失評估 49
4.2.2原始濾材過濾效率測試 50
4.2.3去靜電處理濾材效率測試 55
4.3過濾理論分析 60
4.3.1理論壓損與實際壓損 60
4.3.2單纖維效率模式計算與分析 61
4.3.3濾材過濾品質評估 66
第五章 結論與建議 68
5.1結論 68
5.2建議 68
參考文獻 70
附件 理論分析 75
1.Marre S, Palmeri J. Theoretical study of aerosol filtration by nucleopore filters: the intermediate crossover regime of Brownian diffusion and direct interception. J Colloid Interface Sci, 2001 May 15;237(2):230-238.
2.W.D. Cyrs, D.A. Boysen, G. Casuccio, T. Lersch, T.M. Peters. Nanoparticle collection efficiency of capillary pore membrane filters. Journal of Aerosol Science,Volume 41, Issue 7, July 2010, Pages 655-664.
A.P. Jones. Indoor Air Quality and Health. Atmospheric Environment, Volume 33, Issue 28, December 1999, Pages 4535-4564.
3.A.A. Sawant, K. Na, X.N. Zhu, K. Cocker, S. Butt, C. Song, D.R. Cocker. Characterization of PM2.5 and selected gas–phase compounds at multiple indoor and outdoor sites in Mira Loma, California. Atmospheric Environment, Volume 38, Issue 37, December 2004, Pages 6269-6278.
4.D. Massey, A. Kulshrestha, J. Masih, A. Taneja. Seasonal trends of PM10, PM5.0, PM2.5 & Amp; PM10 in indoor and outdoor environments of residential homes located in North–Central India. Building and Environment, 47 (2012) 223-231.
5.M.K. Seleventi, D.E. Saraga, C.G. Helmis, K. Bairachtari, C. Vasilakos, T. Maggos. PM2.5 indoor/outdoor relationship and chemical composition in ions and OC/EC in an apartment in the center of Athens. Fresenius Environmental Bulleti, 21(11):3177 · January 2012.
6.X. Sureda, J.M. Martinez–Sanchez, M.J. Lopez, M. Fu, F. Aguero, E. Salto, M. Nebot, E. Fernandez. Secondhand smoke levels in public building main entrances: Outdoor and indoor PM2.5 assessment. Tobacco Control, 21(2012), pp. 543-548.
7.Hanninen, E. Lebret, V. llacqua, K. Katsouyanni, F. Kunzli, R.J. Sram, M. Jantunen. Infiltration of ambient PM2.5 and levels of indoor generated non–ETS PM2.5 in residences of four European cities. Atmospheric Environment, Volume 38, Issue 37, December 2004, Pages 6411-6423.
8.J.L. Adgate, S.J. Mongin, G.C. Pratt, J. Zhang, M.P. Field, G. Ramachandran, K. Sexton. Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Science of the Total Environment, Volume 386, Issues 1–3, 1 November 2007, Pages 21-32.
9.L.K. Baxter, J.E. Clougherty, C.J. Paciorek, R.J. Wright, J.I. Levy. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data. Atmospheric Environment, 2007 Oct; 41(31): 6561–6571.
10.D. Castro, K. Slezakova, C. Delerue–Matos, M.G. Alvim–Ferraz, S. Morais, M.C. Pereira. Contribution of traffic and tobacco smoke in the distribution of polycyclic aromatic hydrocarbons on outdoor and indoor PM2.5. Global Nest Journal, 12(1) · March 2010, pp. 3-11.
11.J.M. Lim, J.H. Jeong, J.H. Lee, J.H. Moon, Y.S. Chung, K.H. Kim. The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air, 2011 Apr ;21(2): 145-155.
12.L.E. Gerharz, A. Kruger, O. Klemm. Applying indoor and outdoor modeling techniques to estimate individual exposure to PM2.5 from personal GPS profiles and diaries: A pilot study. Science of the Total Environment, 05 Jul 2009, 407(18):5184-5193.
13.K.W. Brown, J.A. Sarnat, P. Koutrakis. Concentrations of PM2.5 mass and components in residential and non–residential indoor microenvironments: The Sources and Composition of Particulate Exposures study. Journal of Exposure Science and Environmental Epidemiology, 2012 Mar-Apr;22(2):161-72.
14.W.A. Jedrychowski, F.P. Perera, A. Pac, R. Jacek, R.M. Whyatt, J.D. Spengler, T.S. Dumyahn, E. Sochacka–Tatara. Variability of total exposure to PM2.5 related to indoor and outdoor pollution sources – Krakow study in pregnant women. Science of the Total Environment, 2006 Jul 31;366(1):47-54.
15.T. Larson, T. Gould, C. Simpson, L.J.S. Liu, C. Claiborn, J. Lewtas. Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization. Journal of the Air& Waste Management Association, 54:9, 1175-1187.
16..D. Martuzevicius, S.A. Grinshpun, T. Lee, S. Hu, P. Biswas, T. Reponen, G. LeMasters. Traffic–related PM2.5 aerosol in residential houses located near major highways: Indoor versus outdoor concentrations. Atmospheric Environment, 42(2008), pp. 6575-6585
17.J.J. Cao, H. Huang, S.C. Lee, J.C. Chow, C.W. Zou, K.F. Ho, J.G. Watson. Indoor/outdoor relationships for organic and elemental carbon in PM2.5 at residential homes in Guangzhou, China. Aerosol and Air Quality Research, 12 (2012), pp. 902-910
18.G. Sangiorgi, L. Ferrero, B.S. Ferrini, C. Lo Porto, M.G. Perrone, R. Zangrando, A. Gambaro, Z. Lazzati, E. Bolzacchini. Indoor airborne particle sources and semi–volatile partitioning effect of outdoor fine PM in offices. Atmospheric Environment, 65(2013), pp. 205-214
19.Mohammed O.A. Mohammed, Wei–Wei Song, Wan–Li Ma, Wen–Long Li, John J. Ambuchi, Mohammed Thabit, Yi–Fan Li. Trends in indoor/outdoor PM2.5 research: A systematic review of studies conducted during the last decade (2003–2013). Atmospheric Pollution Research, Volume 6, Issue 5, September 2015, Pages 893-903.
20.Su, W. H. Indoor air pollution. Resource, Conservation and Recycling, 16 (1996) 77-91.
21.Alan Vette , Anne Rea , Philip Lawless , Charles Rodes , Gary Evans , Ross Highsmith & Linda Sheldon. Characterization of Indoor-Outdoor Aerosol Concentration Relationships during the Fresno PM Exposure Studies. Journal Aerosol Science and Technology, Volume 34, 2001. Pages 118-126.
22.Maloney, M., Wray, B., DuRant, R., and Smith, L., Effects of an electronic air cleaner and negative ionizer on the population of indoor mold spores. Annals of Allergy, 1987 Sep;59(3):192-4.
23.Ratnesar-Shumate, S., Wu, C. Y., Wander, J., Lundgren, D., Farrah, S., Lee, J. H. et al. Evaluation of physical capture efficiency and disinfection capability of an iodinated biocidal filter medium. Aerosol and Air Quality Research, 8(1):1-18 · March 2008.
24.Yun, K. M., Hogan, C. J., Matsubayashi, Y., Kawabe, M., Iskandar, F., and Okuyama, K., Nanoparticle filtration by electrospun polymer fibers. Chemical Engineering Science, 62(17):4751-4759 · September 2007.
25.Byung Hyun Park, Myong-Hwa Lee, Sang Bum Kim, Gyung Soo Kim & Young Min Jo., Preparation and Characterization of Porous Composite Filter Medium by Polytetrafluoroethylene Foam Coating. Journal of the Air & Waste Management Association, 2010 Feb;60(2):137-41.
26.Byung Hyun Park, Sang Bum Kim, Young Mio Jo, Myong-Hwa Lee. Filtration Characteristics of Fine Particulate Matters in a PTFE/Glass Composite Bag Filter. Aerosol and Air Quality Research, 12: 1030–1036, 2012.
27.Brown, R. C., Aerosol Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergammon Press, Oxford, pp. 120-177, 1993.
28.Huiming Xiao, Gangjin Chen, Yeping Song. (2012) Penetration Performance of Melt-Blown Polypropylene Electret Nonwoven Web against DEHS Aerosols. Advanced Materials Research, ISSN: 1662-8985, Vols. 393-395, pp 1318-1321.
29.Yuji YAMADA, Akira KOIZUMI, Katsuhiro MIYAMOTO. Aerosol Penetrations through Filter Media Made of PTFE and & or Glass fiber. Journals, Volume 13 (1998) Issue 2 Pages 103-109.
30.Jingxia Liu, David Y.H. Pui, Jing Wang. Removal of airborne nanoparticles by membrane coated filters. Science of The Total Environment. 2011 Oct 15;409(22):4868-74.
31.Anna Jackiewicz, Lukasz Werner. Separation of Nanoparticles from Air Using Melt-Blown Filtering Media. Aerosol and Air Quality Research, 15: 2422–2435, 2015
32.Li Bao, Kazuya Seki, Hitoshi Niinuma, Yoshio Otani, Ratna Balgis, Takashi Ogi, Leon Gradon, Kikuo Okuyama. Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and Pirification Technology, Volume 159, 8 February 2016, Pages 100-107.
33.Hinds, W. C. (1999). Aerosol Technology, New York: WILEY-INTERSCIENCE.
34.K. W. Lee, B. Y. H. Liu. Experimental Study of Aerosol Filteration by Fiberous Filters [J], Aerosol Science and Technology, Volume 1, 1981 - Issue 1, 3 Pages 35-46.
35.P. Kulkarni, P.A. Baron, K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, Third Edition, Van Nostrand Reinhold 2011.
36.Lee K.W., Mukund R., Filtration collection. In: Baron PA, Willeke K, editors. Aerosol Measurement — Principles, Techniques, and Application. 2nd Ed. John Wiley and Sons; 2001.
37.Lee KW, Liu BYH. On the minimum efficiency and most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association, 1980; 30: 377–81.
38.Chen, C.C., Lehtimaki, M. and Willeke, K., Loading and Filtration Characteristics of Filtering Facepiece. Am. Ind. Hyg. Assoc. J., 1993 Feb;54(2):51-60.
39.Heim, M., Mullins, B., Wild, M., Meyer, J. and Kasper, G., Filtration Efficiency of Aerosol Particles below 20 nanometers. Aerosol Sci. Technol, 3Volume 39, 2005 - Issue 8, Pages 782-789.
40.Boskovic, L., Agranovski, I.E. and Braddock, R.D.(2007). Filtration of Nanosized Particles with Different Shape on Oil Coated Fibres J. Aerosol Sci. 38: 1220–1229.
41.Chen, C. C., and Huang, S. H. (1998). The Effects of particle Charge on the Performance of a Filtering Facepiece, Am. Ind. Hyg. Assoc. J. 59:227-233.
42.Agnieszka Brochocka, Krzysztof Makowski and Katarzyna Majchrzycka. Penetration of different nanoparticles through melt-blown filter media used for respiratory protective devices. Textile Research Journal. 82(18) 1906–1919(2012).
43.Jing Xian Liu, De Qiang Chang, Li Ting Miao, Ning Mao and Xi Sun. Experiment investigation on two filter medias for air filtration. Applied Mechanics and Materials. (2013) ISSN: 1662-7482, Vols. 300-301, pp 1340-1343.
44.Xiaosong Chen, Jingxian Liu, Deqiang Chang, Ning Mao, Xi Sun. Research on air purification performance of typical filter media. Advanced Materials Research. ISSN: 1662-8985, Vol. 894, pp 271-274.
45.Michael W. Osborne, L. Gail, Peter Ruiter, and Hugo Hemel. Applied membrane air filtration technology for best energy savings and enhanced performance of critical processes. European Journal of Parenteral & Pharmaceutical Sciences. 2013; 18(3): 76-82.
46.張誠,胡至軍,王松凌,汪丹妤。玻璃纖維空氣濾紙的製備及性能。產品天地,2014,33(10):49-51。
47.曾旭,張紅杰。空氣過濾紙的研究進展及發展概況。天津造紙,2014(4):11-14。
48.徐永建,周彤,朱振峰。玻璃纖維在造紙領域中的應用。中華造紙,2012,33(18):14-17。
49.范存養,徐文華。國外空氣潔淨技術發展的若干現狀。潔淨與空調技術,2003(1):8-18。
50.張林,李玉海。聚四氟乙烯的改性及應用。化學工業,2010(4):111-112。
51.謝蘇江。聚四氟乙烯的改性及應用。化工新型材料,2002,30(11):26-30。
52.郝新敏,楊元,黃賦香。聚四氟乙烯微孔膜及纖維。第一版,北京化學工業出版社,2011:9-20;202-206。
53.侯成成,黃磊,黃斌香。PTFE微孔薄膜在油水分離中的應用研究。水處理技術,2013,39(6):73-76。
54.陳萬春,纖維性濾材與靜電集塵器對奈米微粒之收集效率探討,勞工安全衛生簡訊,第八十三期,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊