|
1.Brakenridge, R., & Anderson, E. (2006). MODIS-based flood detection, mapping and measurement: the potential for operational hydrological applications. Transboundary floods: reducing risks through flood management, 2006, 1-12. 2.Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., Li, C., & Holben, B. N. (2003). Global monitoring of air pollution over land from the Earth Observing System‐Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108(D21). 3.Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-2218. 4.Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y. C., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880-5892. 5.Hansen, M. C., DeFries, R. S., Townshend, J. R., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6-7), 1331-1364. 6.Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., Gao, F., & White, J. C. (2009). A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8), 1613-1627.
7.Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569. 8.Imai, T., and Yoshida, R. (2016). Algorithm theoretical basis for Himawari-8 Cloud Mask Product. Meteorol. Satell. Center Tech. Note, 61, 1-17. 9.Jurgens, C. (1997). The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing, 18.17, 3583-3594. 10.Kopeika, N. S., Dror, I., & Sadot, D. (1998). Causes of atmospheric blur: Comment on atmospheric scattering effect on spatial resolution of imaging systems. JOSA A, 15(12), 3097-3106. 11.Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck. (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys., 10, 10399–10420. 12.Lin, C., Li, Y., Yuan, Z., Lau, A. K., Li, C., & Fung, J. C. (2015). Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM 2.5. Remote Sensing of Environment, 156, 117-128. 13.Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., & Frey, R. A. (2003). The MODIS cloud products: Algorithms and examples from Terra. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 459-473. 14.Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., & Eck, T. F. (2005). The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62(4), 947-973. 15.Schwartz, J., Dochery, D.W., Neas, L.M., (1996). Is daily mortality associated specifically with fine particles. Journal of Air and Waste Management Association, 46, 927-939. 16.Shettigara, V. K. (1992). A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogrammetric Engineering and Remote Sensing, 58(5), 561-567. 17.Sifakis, N., & Deschamps, P. Y. (1992). Mapping of air pollution using SPOT satellite data. Photogrammetric Engineering and Remote Sensing, 5, 4. 18.Sano, I., Mukai, M., Iguchi, N., & Mukai, S. (2010). Suspended particulate matter sampling at an urban AERONET site in Japan, part 2: relationship between column aerosol optical thickness and PM 2.5 concentration. Journal of Applied Remote Sensing, 4(1), 043504. 19.Tanré, D., Deschamps, P. Y., Devaux, C., & Herman, M. (1988). Estimation of Saharan aerosol optical thickness from blurring effects in Thematic Mapper data. Journal of Geophysical Research: Atmospheres, 93(D12), 15955-15964. 20.Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., & Van Driel, N. (2001). Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogrammetric Engineering and Remote Sensing, 67(6). 21.Wu, M.; Wang, J.; Niu, Z.; Zhao, Y.; Wang, C. A model for spatial and temporal data fusion. J. Infrared Millim. Waves 2012, 31, 80–84. 22.Wang, J., Xu, X., Spurr, R., Wang, Y., & Drury, E. (2010). Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China. Remote Sensing of Environment, 114(11), 2575-2583. 23.Wang, J., & Christopher, S. A. (2003). Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies. Geophysical Research Letters, 30(21). 24.Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J. G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610-2623. 25.Zhang, W., Li, A., Jin, H., Bian, J., Zhang, Z., Lei, G., Qin, Z., & Huang, C. (2013). An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data. Remote Sensing, 5(10), 5346-5368. 26.Zeger, S. L., Thomas, D., Dominici, F., Samet, J. M., Schwartz, J., Dockery, D., & Cohen, A. (2000). Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environmental health perspectives, 108(5), 419.
|