跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾欣樺
研究生(外文):Hsin-Hua Chung
論文名稱:含茚及1,2,5-噻二唑之聚二噻吩一吡咯電致色變材料合成與光學及電化學性質探討
論文名稱(外文):Synthesis, optical and electrochemical characterizations of inden and 1,2,5-thiadiazole-containing polydithienylpyrrole
指導教授:吳知易
指導教授(外文):Tzi-Yi Wu
口試委員:郭仲文林淵淙
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:161
中文關鍵詞:電致色變材料
外文關鍵詞:Electrochromic materials, electrochromic device, electrochemical polymerization, spectroelectrochemistry, copolymerization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究主要為含茚(DIT)及1,2,5-噻二唑(BDTA)之二噻吩一吡咯電致變色材料合成,利用電化學聚合方法分別製備兩種均聚物 PDIT 和PBDTA。此外將DIT和 BDTA 單體與 TTPA 及 DTP 基團進行共聚以製備四種共聚物P(DIT-TTPA)、P(BDTA-TTPA)、P(DIT-DTP)和P(BDTA-DTP),並探討其光學和電化學特性,包含光學對比、色彩變化、電化學穩定性、著色效率及光學記憶性質。將這六種高分子於液態([EPI+][TFSI-])及元件(與陰極 PPDOT-Et2和膠態電解質搭配組裝成互補式元件)環境下進行測試。當均聚物在中性態施加電壓至氧化態,聚合膜不僅可逆而且具多彩變化(黃色、綠色及藍色),此外經由兩種單體共聚使薄膜氧化態呈現顏色微調的效果。P(DIT-TTPA)共聚物薄膜於液態[EPI+] [TFSI-]電解質中,波長位於1042nm擁有最大穿透度差值為60.3%,P(BDTA-TTPA)具最大著色效率(217.8cm2/C)。互補式元件PDIT/PProDOT-Et2於590nm的位置具最大穿透度差值,為50.3%。互補式元件P(BDTA-TTPA)/PProDOT-Et2具最大著色效率,為649.4cm2/C,光學記憶以 PBDTA/ PProDOT-Et2元件最佳,氧化態穿透度變化只有1.5%,此外,這些電致變色元件皆有很好的氧化還原穩定性。
Inden (DIT) and 1,2,5-thiadiazole (BDTA ) - based electrochromic materials are synthesized PDIT and PBDTA homopolymers are prepared by electropolymerizing DIT and BDTA monomers, respectively. Moreover, P(DIT-TTPA ),P(BDT-TTPA) , P(DIT-DTP), and P(BDTA-DTP) copolymers are prepared by electropolymerizing DIT and BDTA with TTPA and DTP units. Their optical and electrochemical properties, such as optical contrast, color variation, electrochemical stability, coloration efficiency, and optical memory properties are investigated. Six polymer films are studied inaliquid state electrolyte ([EPI+][TFSI-]) and in electrochromic devices (ECDs). Upon application of specific potentials, the state of homopolymers (PDIT and PBDTA) changes from neutral to oxidation state. These homopolymer films are not only reversibly oxidized and reduced but also accompanied by obvious color change (yellow, green, and blue). Compare the colors with homopolymer films, the colors of their corresponding copolymer films show slight variations. Maximum optical contrast (ΔT max) of P(DIT-TTPA ) films are measured as 60.3% at 1042 nm in [EPI+][TFSI-] solution, and the maximum coloration efficiency (η) of P(BDTA- TTPA) films are calculated to be 217.8 cm2/C. The ECDs are fabricated using anodic polymer films, gel state electrolytes, and cathodic PProDOT-Et2 films. PDIT/ PProDOT-ET2 ECD shows the highest ΔT max (50.3%) at 590nm, P(BDTA-TTPA)/ PProDOT-Et2 ECD shows the highest η (649.4 cm2/C) at 590 nm, and PBDTA / PProDOT-Et2 ECD shows the best optical memories (ΔT max is 1.5% in the oxidation state ). In addition, ECDs show satisfactory redox stability.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1-1前言: 1
1-2 電致色變簡介 3
1-2-1 電致色變的應用領域 3
1-2-2 電致色變之種類 6
1-2-3 電致色變的基本參數 7
1-3研究動機 9
第二章 文獻回顧 10
第三章 實驗部分 18
3-1研究架構: 18
3-2 實驗藥品 19
3-3實驗儀器 20
3-4 ITO玻璃前處理 20
3-5實驗裝置 21
3-5-1電化學聚合 21
3-5-2電化學與光學性質於液態環境測試 22
3-5-3電化學與光學性質於膠態環境測試 23
3-6 實驗合成 24
3-6-1高分子單體合成 24
3-6-2離子液體合成 30
3-7 高分子電解質膜的製備 32
3-8 電化學聚合 33
3-8-1 DIT、BDTA、PProDOT-Et2均聚物的電化學聚合 33
3-8-2 DIT、BDTA分別與DTP、TTPA的電化學共聚合 34
第四章結果與討論 35
4-1 SNS材料之電化學性質 35
4-1-1聚合高分子與共聚物測試 35
4-1-2起始電位 37
4-1-3 FTIR、UV-vis 40
4-1-4 定電位法聚合 45
4-1-5 高分子薄膜分析 46
4-2 SNS薄膜於液態電解質下測試光學性質 53
4-2-1六種薄膜In-situ UV-vis光學吸收 53
4-2-2六種高分子薄膜之穿透度變化及穩定性 73
4-2-3比較六種高分子薄膜之穿透度變化、穩定性及轉換時間 86
4-2-4六種高分子薄膜之著色效率分析 91
4-3 SNS系列薄膜於膠態電解質下測試光學性質 93
4-3-1六種元件In-situ UV-vis光學吸收 94
4-3-2六種元件之穿透度變化及穩定性 113
4-3-3比較六種元件之穿透度變化、穩定性及轉換時間 126
4-3-4比較六種元件之著色效率分析 130
4-3-5比較六種元件多圈循環電化學穩定性 132
4-3-6比較六種元件分析光學記憶 137
第五章 結論 141
參考文獻 143


[1]何國川,電化學與無窗時代,化工,第37卷第3期,(1990),頁32-42。
[2] J.-C. Lai, X.-R. Lu, B.-T. Qu, F. Liu, C.-H. Li, X.-Z. You, Organic Electronics 15 (2014) 3735–3745.
[3]姜駿彥,國立成功大學化學研究所碩士論文 (2013) 台灣。
[4] J. R. Platt, Journal of Chemistry and Physics 34 (1961) 862–864.
[5] S. K. Deb, Applied Optics Supplement 3 (1969) 192.
[6] http://www.gentex.com/zh-hant/node/273 (gentex公司官方網站)
[7] J. S. E. M. Svensson, C. G. Granqvist, Solar Energy Materials and Solar Cells 12 (1985) 391–402.
[8]http://www.xincailiao.com/html/weizixun/xianjinjiegoucailiao/2015/0416/3416.html
[9] R. J. Mortimer, Chemical Society Reviews 26 (1997) 147–156.
[10] J. Yano, K. Noguchib, S. Yamasakib, S. Yamazakic, Electrochemistry Communications 6 (2004) 110–114.
[11] T. Ohtasuka, M. Masuda, N. Sato, Journal of The Electrochemical Society 134 (1987) 2406.
[12] E. Ünür, L. Toppare, Y. Yagci, F. Yilmaz, Materials Chemistry and Physics 91 (2005) 261–268.
[13] M. Shibata, K. -I. Kawashitaa, R. Yosomiyaa, Z. Gongzhengb, European Polymer Joumal 37 (2001) 915–919.
[14] H. Hu, L. Hechavarrı́a, J. Campos, Solid State Ionics 161 (2003) 165–172.
[15] R. J. Mortimer, Electrochimica Acta 44 (1999) 2971–2981.
[16]陳威凱,國立台灣大學工學院化學工程學研究所碩士論文 (2009) 台灣。
[17] P. R. Somani, S. Radhakrishnan, Materials Chemistry and Physics 77 (2002) 117–133.
[18] 何銘軒,國立中央大學化學學系碩士論文 (2011) 台灣。
[19] A. A. Argun, P. H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J.
Hwang, N. J.Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Chemistry of Materials 16 (2004) 4401–4412.
[20] P. M. Beaujuge, J. R. Reynolds, Chemical Reviews, 110 (2010) 268–320.
[21] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, L.Toppare Sensors and Actuators B 121 (2007) 622–628.
[22] M. Ak, E. S-ahmetlioglu, L. Toppare, Journal of Electroanalytical Chemistry 621 (2008) 55–61.
[23] W. Steinkopf, R. Leitsmann, K. H. Hofmann, Liebigs Ann Chem 546 (1941) 180.
[24] P. Monk, P. Monk, R. Mortimer, D. Rosseinsky, Cambrige University press (2007) 318.
[25] P. Camurlu, C. Gültekin, Solar Energy Materials and Solar Cells 107 (2012) 142–147.
[26] A. L. Dyer, E. J. Thompson, R. Reynolds, ACS Applied Materials and Interfaces 3 (2011) 1787–1795.
[27] M. P. Algi, Z. Öztaş, S. Tirkes, A. Cihaner, F. Algi, Organic Electronics 14 (2013) 1094-1102
[28] P. Camurlu, N. Karagoren, Reactive and Functional Polymers 73 (2013) 847–853.
[29] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, L. Toppare, Electrochimica Acta 51 (2006) 5412–5419.
[30] J. H. Huang, C. Y. Hsu, C. W. Hu, C. W. Chu, K. C. Ho, ACS Applied Materials and Interfaces 2 (2010) 351.
[31] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D.Rönnow, Journal of Non-Crystalline Solids 218 (1997) 273–279.
[32] S. Koyuncu, C. Zaferb, E. Sefera, F. B. Koyuncua,S. Demicb, I. Kayaa, E. Ozdemir, S. Icli, Synthetic Metals 159 (2009) 2013–2021.
[33] A. Cihaner, F. Algı, Electrochimica Acta 54 (2008) 786.
[34] A. Cihaner, F.Algı, Electrochimica Acta 53 (2008) 2574.
[35] D. Witker, J. R. Reynolds, Macromolecules 38 (2005) 7636.
[36] D. M. Welsh, Macromolecules 35 (2002) 6517–6525.
[37] A. Fernicola, S. Panero, B. Scrosati, J. Power Sources, 178 (2008) 591.
[38] L. N. Sim, S.R. Majid, A.K. Arof, Solid State Ionics, 15 (2012) 209–210.
[39] A. Arslan O. Turkarslan, C. Tanyeli,˙I. M. Akhmedov, L. Toppare, Materials Chemistry and Physics, 104 (2007) 410.
[40] A. Yavuz, B. Bezgin, A. M. O¨ nal, Journal of Applied Polymer Science, 114 (2009) 2685–2690.
[41] S. Tirkes¸ J. Mersinib, Z. Öztas¸ M. P. Algic, F. Algic, A. Cihanera, Electrochimica Acta 90 (2013) 295–301.
[42] K.Wanga, W. Yanga, Y. Hua, Y. Kaia, Y. Sh, Electrochimica Acta 137 (2014) 627–633.
[43] Y.–T. Hsieh, T.-I. Leong, C.-C. Huang, C.-S Yeh, I.-W. Sun, Chemical Communications 46 (2010) 484.
[44] B. Lua, S. Zhanga, L. Qina, S. Chenc, S. Zhena, J. Xua, Electrochimica Acta 106 (2013) 201–208.
[45] G. Wanga, J. Huang, X. Fu, C. L.Wu, L.Wu, J. L. Deng, Electrochimica Acta 56 (2011) 6352–6360.
[46] G. Nie, L.Qu, J. Xu, S. Zhang, Electrochimica Acta 53 (2008) 8351–8358.
[47] C. Zhang, C.Hua, G. Wang, M. Ouyang, C. Ma, Electrochimica Acta 55 (2010) 4103–4111.
[48] B. Hu, Y. Zhang, X. Lv, M. Ouyang, Z. Fu, C. Zhang, Optical Materials 34 (2012) 1529–1534.
[49] B. Wang, J. Zhao, R. Liu, J. Liu, Q. He, Solar Energy Materials and Solar Cells 95 (2011) 1867–1874.
[50] X. Cheng, J. Zhao, C. Cui, Y. Fu, X. Zhang, Journal of Electroanalytical Chemistry 677-680 (2012) 24–30.
[51] Y. A. Udum, H. B. Yıldız, H. Azak, E. Sahin, O. Talaz, A. C¸ırpan, L. Toppare, Journal of Applied Polymer Science 131 (2014) 40701.
[52] A. Cihaner, O. Mert, A. S. Demir, Electrochim Acta 54 (2009) 1333.
[53] H. C. Söyleyici, M. Ak, Y. Şahin, D. O. Demikol, S. Timur, Materials Chemistry and Physics 142 (2013) 303–310.
[54] K.-H. Chang, H. P. Wang, T.-Y. Wuc, I.-W. Sun, Electrochimica Acta 119 (2014) 225–235.
[55] P. Camurlu, C. Gültekin, Z.Bicil, Electrochimica Acta 61 (2012) 50–56.
[56] T.-Y. Wu, J.-W. Liao, C.-Y. Chen, Electrochimica Acta 150 (2014) 245–262.
[57] P. Camurlu, Z. Bicil, C. Gültekin, N. Karagore Electrochimica Acta 63 (2012) 245–250.
[58] C. W. Kuo, T. H. Hsieh, C. K. Hsieh, J. W. Liao, T. Y. Wu, Journal of The Electrochemical Society 161 (2014) D782.
[59] C. Xu, J. Zhao, J. Yu, C. Cui, Electrochimica Acta 96 (2013) 82–89.
[60] S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, L. Toppare, Optical Materials 30 (2008) 1489–1494
[61] E. Yildiz, P. Camurlu, C. Tanyeli, I. Akhmedov, L. Toppare, Journal of Electroanalytical Chemistry 612 (2008) 247–256.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top