|
References 1. Chiam, S., Lim, H., Hafiz, S., Electrochemical Performance of Supercapacitor with Stacked Copper Foils Coated with Graphene Nanoplatelets. Sci. Rep-UK, 2018. 8(1): p. 3093. 2. Hammar, A., Venet, P., Lallemand, R., Study of accelerated aging of supercapacitors for transport applications. IEEE T. Ind Electron., 2010. 57(12): p. 3972-3979. 3. Xie, B., Zou, P., Yang, C. Ultrahigh power graphene based supercapacitor. ICEPT, 2015 16th International Conference on. 2015. IEEE. 4. Kim, S., Chou, P.H., Energy harvesting with supercapacitor-based energy storage, in Smart Sensors and Systems. 2015, Springer. p. 215-241. 5. Salanne, M., Rotenberg, B., Naoi, K., Efficient storage mechanisms for building better supercapacitors. Nat. Energy, 2016. 1(6): p. 16070. 6. Luo, X., Wang, J., Dooner, M., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. energy, 2015. 137: p. 511-536. 7. Chen, T., Dai, L., Carbon nanomaterials for high-performance supercapacitors. Materials Today, 2013. 16(7-8): p. 272-280. 8. Yassine, M., Fabris, D., Performance of Commercially Available Supercapacitors. Energies, 2017. 10(9): p. 1340. 9. Murray, D.B., Hayes, J.G., Cycle testing of supercapacitors for long-life robust applications. IEEE T. P. Electr., 2015. 30(5): p. 2505-2516. 10. Hong, J.-I., Yeo, I.-H., Paik, W.-K., Conducting polymer with metal oxide for electrochemical capacitor: Poly (3, 4-ethylenedioxythiophene) RuO x electrode. J. Electrochem. Soc., 2001. 148(2): p. A156-A163. 11. Chen, L., Hou, Y., Kang, J., Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. J. Mater. Chem. A, 2014. 2(22): p. 8448-8455. 12. Lee, J.-S.M., Briggs, M.E., Hu, C.-C., Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano energy, 2018. 46: p. 277-289. 13. Wang, Y., Song, Y., Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev., 2016. 45(21): p. 5925-5950. 14. Isogai, A., Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers. nanoscale, 2011. 3(1): p. 71-85. 15. Zhang, W., Jing, Z., Shan, Y., Paper reinforced with regenerated cellulose: a sustainable and fascinating material with good mechanical performance, barrier properties and shape retention in water. J. Mater. Chem. A, 2016. 4(44): p. 17483-17490. 16. Costa, M., Veigas, B., Jacob, J., A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014. 25(9): p. 094006. 17. E Moraes, A.R.F., Pola, C.C., Bilck, A.P., Starch, cellulose acetate and polyester biodegradable sheets: Effect of composition and processing conditions. Mat. Sci. Eng. C, 2017. 78: p. 932-941. 18. Kim, J.-H., Mun, S., Ko, H.-U., Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology, 2014. 25(9): p. 092001. 19. Wang, Z., Carlsson, D.O., Tammela, P., Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS nano, 2015. 9(7): p. 7563-7571. 20. Wang, Z., Tammela, P., Strømme, M., Cellulose‐based Supercapacitors: Material and Performance Considerations. Adv. Energy Mater., 2017. 7(18): p. 1700130. 21. Ates, M., Karazehir, T., Sezai Sarac, A., Conducting polymers and their applications. Current Physical Chemistry, 2012. 2(3): p. 224-240. 22. Eftekhari, A., Li, L., Yang, Y., Polyaniline supercapacitors. J. Power Sources, 2017. 347: p. 86-107. 23. Vernitskaya, T.Y.V., Efimov, O.N., Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev., 1997. 66(5): p. 443-457. 24. Chen, X., Devaux, J., Issi, J., The stability of polypyrrole electrical conductivity. Eur. Polym. J., 1994. 30(7): p. 809-811. 25. Abel, S.B., Yslas, E.I., Rivarola, C.R., Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect. Nanotechnology, 2018. 29(12): p. 125604. 26. Kulkarni, V.G., Campbell, L.D., Mathew, W.R., Thermal stability of polyaniline. Synthetic Met., 1989. 30(3): p. 321-325. 27. González, A., Goikolea, E., Barrena, J.A., Review on supercapacitors: technologies and materials. Renewable Sust. Energ. Rev., 2016. 58: p. 1189-1206. 28. Khaligh, A., Li, Z., Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE T. Veh. Technol., 2010. 59(6): p. 2806-2814. 29. Averbukh, M., Lineykin, S., Kuperman, A., Portable ultracapacitor-based power source for emergency starting of internal combustion engines. IEEE T. Power Electr., 2015. 30(8): p. 4283-4290. 30. Patil, S.J., Patil, B.H., Bulakhe, R.N., Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La 2 Te 3 prepared by a chemical synthesis route. RSC Adv., 2014. 4(99): p. 56332-56341. 31. Douglas, H., Pillay, P. Sizing ultracapacitors for hybrid electric vehicles. in Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE. 2005. Citeseer. 32. Cao, J., Emadi, A., A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE T. Power Electr. , 2012. 27(1): p. 122-132. 33. Burke, A., Ultracapacitor technologies and application in hybrid and electric vehicles. Int. J. Energ. Res., 2010. 34(2): p. 133-151. 34. Gidwani, M., Bhagwani, A., Rohra, N., Supercapacitors: the near Future of Batteries. Int. j. eng., 2014. 4(5): p. 22-2. 35. Kim, B.K., Sy, S., Yu, A., Electrochemical supercapacitors for energy storage and conversion. Handb. Clean Energ. Syst., 2015: p. 1-25. 36. Mastragostino, M., Arbizzani, C., Soavi, F., Conducting polymers as electrode materials in supercapacitors. Solid state ionics, 2002. 148(3-4): p. 493-498. 37. Bengtsson, K., Nilsson, S., Robinson, N.D., Conducting polymer electrodes for gel electrophoresis. PloS one, 2014. 9(2): p. e89416. 38. Green, R., Matteucci, P., Hassarati, R., Performance of conducting polymer electrodes for stimulating neuroprosthetics. J. Neur. Eng., 2013. 10(1): p. 016009. 39. De Nooy, A.E., Besemer, A.C., Van Bekkum, H., Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr. Res. , 1995. 269(1): p. 89-98. 40. Maity, P., Khandelwal, M., Synthesis time and temperature effect on polyaniline morphology and conductivity. American Journal, Hyderabad, 2016: p. 37-42. 41. Singh, R., Tandon, R., Panwar, V., Low temperature relaxation in polypyrrole. J. Chem. Phys., 1991. 95(1): p. 722-723. 42. Casado, U., Aranguren, M., Marcovich, N., Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrason. Sonochem., 2014. 21(5): p. 1641-1648. 43. Sasso, C., Zeno, E., Petit‐Conil, M., Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromolecular Materials and Engineering, 2010. 295(10): p. 934-941. 44. Devadas, B. Imae, T., Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sust. Chem. Eng., 2017. 6(1): p. 127-134.
|