|
[1]C. D. Lee, Y. Chang, H. H. Chang, and J. H. Chen, “Unusual General Error Locator Polynomial for the (23, 12, 7) Golay Code,” IEEE Commun. Lett., vol. 14, no. 4, pp. 339-341, Apr. 2010. [2]C. D. Lee, Y. Chang, M. H. Jing, and J. H. Chen, “Decoding binary cyclic codes with irreducible generator polynomials up to actual minimum distance,” IEEE Commun. Lett., vol. 14, no. 11, pp. 1050-1052, Nov. 2010. [3]C. Ding, T. Helleseth, H. Niederreiter, and C. Xing, “The minimum distance of the duals of binary irreducible cyclic codes, ” IEEE Trans. Inform. Theory, vol. 48, no. 10, pp. 2679-2689, 2002. [4]C. Marcolla, E. Orsini, and M. Sala, “Improved decoding of affine-variety codes,” Mar. 2011. [Online]. Available: http://arxiv.org/abs/1102.4186. [5]D. Augot, M. Bardet, and J.-C. Faugère, “On the decoding of binary cyclic codes with the Newton identities,” J. Symboc. Comput., vol. 44, no. 12, pp. 1608-1625, Dec. 2009. [6]Dmitri Strukov, “The area and latency tradeoffs of binary bit-parallel BCH decoders for prospective nano electronic memories,” ACSSC Papers, pp. 1183-1187, May, 2007. [7]E. Orsini and M. Sala, “Correcting errors and erasures via the syndrome variety,” J. Pure Appl. Algebra, vol. 200, pp. 191-226, 2005. [8]E. Orsini and M. Sala, “General error locator polynomials for binary cyclic codes with and ,” IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1095-1107, Mar. 2007. [9]E. Prange, “Cyclic error-correcting codes in two symbols,” Air Force Cambridge Research Center-TN-57-103, Cambridge, MA, 1957. [10]E. R. Berlekamp, Algebraic Decoding Theory. New York: McGrawHill, 1968. [11]E. V. York, “Algebraic description and construction of error correcting codes, a systems theory point of view,” Ph.D. dissertation, Univ. Notre Dame, 1997. [12]G. L. Feng and K. K. Tzeng, “A new procedure for decoding cyclic and BCH codes up to actual minimum distance,” IEEE Trans. Inform. Theory, vol. 40, no. 5, pp. 1364-1374, Sept. 1994. [13]I. E. Sutherland, R. F. Sproull, and D. Harris, Logical effort designing fast CMOS circuits, San Francisco, CA; London: Morgan Kaufmann Publishers, 1999. [14]J. E. Meggitt, “Error Correcting Codes and Their Implementation,” IRE Trans. Inf. Theory, IT-7, pp. 232-244, Oct. 1961. [15]K. K. Shen, C. Wang, K. K. Tzeng, and B.-Z. Shen, “Generation of matrix for determining minimum distance and decoding of cyclic codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 653-657, Mar. 1996. [16]L. Rudolph, “Easily Implemented Error-Correction Encoding-Decoding,” G. E. Report No. 62MCD2, General Electric Corporation, Oklahoma City, Okla., Dec. 1962. [17]M. A. Armand and S. H. Ong, “Linear dependence relations of nonrecurrent syndromes in decoding cyclic codes beyond their design distance,” in Proc. International Conference on Commun. Systems, vol. 1, pp. 317-321, Singapore, Nov. 2002. [18]M. A. Neifeld and J. D. Hayes, “Error-correction schemes for volume optical memories,” Applied Optics, vol. 34, no. 35, pp. 8183-8191, 1995. [19]M. E. Mitchell et al., “Coding and Decoding Operation Research,” G. E. Advanced Chap. 5 References 139 Electronics Final Report on Contract AF 19 (604)-6183, Air Force Cambridge Research Labs., Cambridge, Mass., 1961. [20]M. Elia, “Algebraic decoding of the (23, 12, 7) Golay code,” IEEE Trans. Inf. Theory, vol. IT-33, pp. 150-151, Jan. 1987. [21]Ming-Haw Jing, Yaotsu Chang, Chong-Dao Lee, Jian-Hong Chen, and Zih-Heng Chen, “A Result on Zetterberg Codes, ” IEEE Commun. Lett., vol. 14, no. 7, pp. 662-663, July, 2010. [22]R. He, I. S. Reed, T. K. Truong, and X. Chen, “Decoding the (47, 24, 11) quadratic residue code,” IEEE Trans. Inform. Theory, vol. 47, pp. 1181-1186, Mar. 2001. [23]S. Lin and D. J. Costello, Error-Control Coding: Fundamentals and Applications, Englewood Cliffs, NJ: Prentice-Hall, 1983. [24]S. Reed, “A Class of Multiple-Error-Correcting Codes and the Decoding Scheme,” IRE Trans., IT-4. pp. 38-49, Sept. 1954. [25]S. Reed, T. K. Truong, X. Chen, and X. Yin, “The algebraic decoding of the (41, 21, 9) quadratic residue code,” IEEE Trans. Inform. Theory, vol. 38, pp. 974-985, May 1992. [26]S. Reed, X. Yin, and T. K. Truong, “Algebraic decoding of the (32, 16, 8) quadratic residue code,” IEEE Trans. Inform. Theory, vol. 36, pp. 876-880, July 1990. [27]T. K. Truong, P. Y. Shih, W. K. Su, C. D. Lee, and Y. Chang, “Algebraic decoding of (89, 45, 17) quadratic residue code, ” IEEE Trans. Inform. Theory, vol. 54, no. 11, pp. 5005-5011, Nov. 2008. [28]T. K. Truong, Y. Chang, Y. H. Chen, and C. D. Lee, “Algebraic decoding of (103, 52, 19) and (113, 57, 15) quadratic residue codes,” IEEE Trans. Commun., vol. 53, no. 5, pp. 749-754, May 2005. [29]T. Kasami, “A Decoding Method for Multiple-Error-Correcting Cyclic Codes by Using Threshold Logics,” Conv. Rec. Inf. Process. Soc. Jap. (in Japanese), Tokyo, Nov. 1961. [30]X. Chen, I. S. Reed, and T. K. Truong, “Decoding the (73, 37, 13) quadratic residue code,” Proc. IEE, vol. 141, pp. 253-258, Sept. 1994. [31]X. Chen, I. S. Reed, T. Hellessth, and T. K. Truong, “Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance,” IEEE Trans. Inform. Theory, vol. 40, pp. 1654-1661, Sept. 1994. [32]Y. Chang and C. D. Lee, “Algebraic decoding of a class of binary cyclic codes via Lagrange interpolation formula,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 130-139, Jan. 2010. [33]Y. Chang, C. D. Lee, Z. H. Chen, J. H. Chen, “(23, 12, 7) quadratic residue decoder based on syndrome-weight determination,” Electronics Letters, vol. 44, no. 19, pp. 1147-1149, 2008.09. [34]Y. Chang, T. K. Truong, I. S. Reed, H. Y. Cheng, and C. D. Lee, “Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes,” IEEE Trans. Commun., vol. 51, no. 9, pp. 1463-1473, Sept. 2003.
|