跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/29 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖學佑
研究生(外文):Hsueh-Yu Liao
論文名稱:智慧化加工表面粗糙度預測模型及材料移除率最佳化研究-以塑膠射出成型模銑削為例
論文名稱(外文):Artificial Intelligence Machining Surface Roughness Prediction Model and MRR Optimization – A Case Study of Plastic Injection Mold Milling
指導教授:曾柏昌曾柏昌引用關係
口試委員:盧銘詮卓漢明
口試日期:2015-06-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:82
中文關鍵詞:射出成型模銑削類神經網路表面粗糙度切削效率最佳化
外文關鍵詞:Plastic injection moldMillingArtificial neural networkSurface roughnessCutting efficiencyOptimization
相關次數:
  • 被引用被引用:7
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:111
  • 收藏至我的研究室書目清單書目收藏:4
為能夠應付科技產品的短生命週期、表面品質要求高、數量大等特點,工廠紛紛使用通用加工機配合智慧化的管理、設計及監控系統。
隨著科技發展,近年來間接式感測器愈來愈成熟且電腦的運算能力愈來愈快,硬體方面的阻礙漸漸地被消除了,因此製造智慧化領域有不少學者使用類神經網路預測表面粗糙度,藉由使用實驗資料訓練類神經網路,獲得切削系統的輸入及輸出之間的關係,訓練完成後,類神經網路可以有效預測工件表面品質,達到加工品質提升的智慧化。然而,眾多學者在得到工件品質預測能力後卻沒有將其進一步的利用,實為可惜。
本研究利用類神經網路並融合力信號及聲射信號建構出有效的表面粗糙度預測模型,並且對此預測系統最佳化,在可以接受的表面品質下,找到最大材料移除速率(MRR)的建議參數組合,經過實驗驗證,本系統的表面粗糙度預測最大誤差為11%,平均絕對誤差約為5.2%,每次運算約110秒,表現相當優異。若將本系統適當改良,則可以將本系統移植入PC-based的CNC控制器作為最佳化系統,使得切削加工的參數調整作業得以智慧化。
Technical products have characteristics such as short life cycle, high surface quality request and large quantity. Therefore, manufacturing factories gradually tend to use general types machine tool equipped with intelligent management, intelligent design and monitoring systems.
Recently, with technological development, there are more and more indirect sensors which are normally used, and computer efficiency is higher than the past. The obstacles of hardware are gradually removed. Accordingly, in the field of manufacturing, many researchers use artificial neural networks (ANNs) to predict the surface roughness. They use milling experiment data for training ANNs, and get the relationship between inputs and outputs. In most of cases, well trained ANNs can predict workpiece surface roughness effectively. The prediction system can achieve the intelligentization of rising process quality. However, when their systems got the prediction of workpiece surface quality, the data did not be further used.
This research project will investigate the use of ANNs with sensor fusion to construct an effective surface quality prediction system by making use of force and acoustic emission signals. The prediction system was then optimized under the constraint that the workpiece surface roughness must be lower than the requested surface roughness. The optimization system determined the best parameter combination by maximizing the material removal rate (MRR), and then relaying this information to the machine tool controller.
The optimization system experiments show that the maximum error of is about 11%, and the Mean absolute percentage error is about 5.2%, and each optimization operation takes around 110 sec. The performance of system is excellent. The optimization system can be modify and setup on pc-based CNC controller. Let manufacturing industry field can achieve the intelligentization of rising process efficiency.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.4研究目的 11
1.5研究流程 12
第二章 相關理論基礎 13
2.1切削 13
2.2切削條件 14
2.3刀具磨耗 16
2.4切削監測 17
2.5信號分析、處理、萃取 21
2.6類神經網路(Artificial Neural Networks) 24
2.7最佳化(Optimization) 25
第三章 實驗設備、架構與流程 28
3.1實驗設備 28
3.2實驗架構 34
3.3實驗流程 36
第四章 建立材料移除速率最佳化系統 38
4.1切削預實驗-篩選實驗要素及擷取信號 38
4.2 信號萃取 42
4.3 建立預測模型 54
4.4最佳化方法 59
第五章 測試暨驗證材料移除速率最佳化系統 67
5.1 切削實驗-取得訓練資料 67
5.2 切削實驗-驗證最佳化系統可行性 73
第六章 結論及未來發展 75
6.1實驗結果總論 75
6.2研究效益及價值 77
6.3未來發展方向 77
參考文獻 80
[1] Milton C. Shaw, “Metal cutting principles—Second Edition”, Oxford University, New York, 2005.
[2] J. Paulo Davim, “Machining”, University of Aveiro, Aveiro, 2008.
[3] D. E. DIMLA JR, P. M. LISTER, N. J. LEIGHTON, “Neural network solutions to the tool condition monitoring problem in metal cutting—A critical review of methods”, Int. J. Mach. Tools Manufact. vol. 37, no. 9, pp. 1219--1241, 1997.
[4] D. Barschdorff, L. Monostori, “Neural networks—Their applications and perspectives in intelligent machining”, Computers in Industry, vol. 17, issues 2–3, pp. 101-119, November 1991.
[5] C.H. Lauro, L.C. Brandão, D. Baldo, R.A. Reis, J.P. Davim, “Monitoring and processing signal applied in machining processes—A review”, Measurement, vol. 58, pp. 73–86, 2014.
[6] Saji Varghese, V. Radhakrishnan “A multi sensor approach to in-process monitoring of surface roughness”, J. Mater, Process, vol. 44, pp. 353-362, 1994.
[7] Xiaoh Wang, “Intelligent Modeling and Predicting Surface Roughness in End Milling”, Fifth International Conference on Natural Computation, 2009.
[8] Yu-Hsuan Tsai, Joseph C. Chen, Shi-Jer Lou, “An in-process surface recognition system based on neural networks in end milling cutting operations”, International Journal of Machine Tools & Manufacture 39, pp. 583–605, 1999.
[9] P.G. Benardos, G.C. Vosniakos , “Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments”, Robotics and Computer Integrated Manufacturing, vol. 18,pp. 343–354, 2002.

[10] Mohammad Ishtiyaq Hossain, AKM Nurul Amin, Anayet U Patwari, “Development of an artificial neural network algorithm for predicting the surface roughness in end milling of Inconel 718 alloy”, International Conference on Computer and Communication Engineering, 2008.
[11] Shengchun Wang, Qing Zhang, Tonghong Jin, Shijun Song, “Study of burr behavior in face milling of PH 13-8 Mo stainless steel”, International Congress on Image and Signal Processing, vol. 3, 2010.
[12] J. Vivancos, C.J. Luis, L. Costa, J.A. Ort ́ız, “Optimal machining parameters selection in high speed milling of hardened steels for injection moulds”, Journal of Materials Processing Technology, vol. 155–156, pp. 1505–1512, 2004.
[13] Lohithaksh M Maiyara, Dr.R.Ramanujam, K.Venkatesan, Dr.J.Jerald, “Optimization of Machining Parameters for End Milling of Inconel 718 Super Alloy Using Taguchi Based Grey Relational Analysis”, Procedia Engineering, vol. 64, pp. 1276 – 1282, 2013.
[14] Iulian Marinescu, Dragos A. Axinte, “A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations”, International Journal of Machine Tools & Manufacture, vol. 48, pp. 1148–1160, 2008.
[15] C.K. Toh, “Vibration analysis in high speed rough and finish milling hardened steel”, Journal of Sound and Vibration, vol. 278, pp. 101–115, 2004.
[16] Xiaoli Li, X.P. GuanTime, “Time-frequency-analysis-based minor cutting edge fracture detection during end milling”, Mechanical Systems and Signal Processing, vol. 18, pp. 1485–1496, 2004.
[17] E. Kuljanic, M. Sortino, G. Totis, “Multisensor approaches for chatter detection in milling”, Journal of Sound and Vibration, vol. 312, pp. 672–693, 2008.
[18] Hongrui Cao, YaguoLei, ZhengjiaHe, “Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform”, International Journal of Machine Tools & Manufacture, vol. 69, pp. 11–19, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊