|
Avila-Ospina, L., Moison, M., Yoshimoto, K., & Masclaux-Daubresse, C. Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany. (2014). Banchio, E., Xie, X., Zhang, H., & Pare, P. W. Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem, 57(2): 653-657. (2009). Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., Eberl, L., & Weisskopf, L. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol, 13(11): 3047-3058. (2011). Cheng, C., Gao, X., Feng, B., Sheen, J., Shan, L., & He, P. Plant immune response to pathogens differs with changing temperatures. Nat Commun, 4: 2530. (2013). Cohen, L. B., & Troemel, E. R. Microbial pathogenesis and host defense in the nematode C. elegans. Curr Opin Microbiol, 23: 94-101. (2015). Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J. L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S. C., & Schulze-Lefert, P. SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425(6961): 973-977. (2003). de Torres‐Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., Bögre, L., & Grant, M. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26(5): 1434-1443. (2007). Du, Y., Mpina, M. H., & Birch, P. R. Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity. 169(3): 1975-1990. (2015). Farag, M. A., Zhang, H., & Ryu, C. M. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol, 39(7): 1007-1018. (2013). Hayward, A. P., & Dinesh-Kumar, S. P. What can plant autophagy do for an innate immune response? Annu Rev Phytopathol, 49: 557-576. (2011). Hwang, I. S., An, S. H., & Hwang, B. K. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. Plant J, 67(5): 749-762.( 2011). Kai, M., & Piechulla, B. Plant growth promotion due to rhizobacterial volatiles--an effect of CO2 ? FEBS Lett, 583(21): 3473-3477. (2009). Kalde, M., Nuhse, T. S., Findlay, K., & Peck, S. C. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci U S A, 104(28): 11850-11855. (2007). Kulich, I., Pecenkova, T., Sekeres, J., Smetana, O., Fendrych, M., Foissner, I., Hoftberger, M., & Zarsky, V. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic, 14(11): 1155-1165. (2013). Kulich, I., Vojtikova, Z., Glanc, M., Ortmannova, J., Rasmann, S., & Zarsky, V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol, 168(1): 120-131. (2015). Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., & Dinesh-Kumar, S. P. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121(4): 567-577. (2005). Miransari, M. Use of microbes for the alleviation of soil stressesSpringer,NY.78-79(2014). Pérez-García, A., Pereira, S., Pissarra, J., Gutiérrez, A. G., Cazorla, F., Salema, R., De Vicente, A., & Cánovas, F. Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment. Planta, 206(3): 426-434. (1998). Paul, D., & Park, K. S. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors (Basel), 13(10): 13969-13977.(2013). Pecenkova, T., Hala, M., Kulich, I., Kocourkova, D., Drdova, E., Fendrych, M., Toupalova, H., & Zarsky, V. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J Exp Bot, 62(6): 2107-2116. (2011). Ren, C., Liu, J., & Gong, Q. Functions of autophagy in plant carbon and nitrogen metabolism. Autophagy in plants and algae: 98.(2015). Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W., & Bais, H. P. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol, 3(2): 130-138. (2010). Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol, 134(3): 1017-1026. (2004). Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., & Kloepper, J. W. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A, 100(8): 4927-4932. (2003). Santoro, M., Cappellari, L., Giordano, W., & Banchio, E. Production of Volatile Organic Compounds in PGPR. In D. F. Cassán, Y. Okon, & M. C. Creus (Eds.), Handbook for Azospirillum: Technical Issues and Protocols: 307-317. Cham: Springer International Publishing. (2015). Santoro, M. V., Cappellari, L. R., Giordano, W., & Banchio, E. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biology, 17(6): 1218-1226. (2015). Santoro, M. V., Zygadlo, J., Giordano, W., & Banchio, E. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem, 49(10): 1177-1182. (2011). Selosse, M. A., Bessis, A., & Pozo, M. J. Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol, 22(11): 607-613. (2014). Stegmann, M., Anderson, R. G., Ichimura, K., Pecenkova, T., Reuter, P., Zarsky, V., McDowell, J. M., Shirasu, K., & Trujillo, M. The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell, 24(11): 4703-4716. (2012). Stegmann, M., Anderson, R. G., Westphal, L., Rosahl, S., McDowell, J. M., & Trujillo, M. The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death. Plant Signal Behav, 8(12): e27421.(2013). Teh, O.-K., & Hofius, D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of experimental botany: ert441. (2014). Utkhede, R. S., & Sholberg, P. L. In vitro inhibition of plant pathogens by Bacillus subtilis and Enterobacter aerogenes and in vivo control of two postharvest cherry diseases. Canadian Journal of Microbiology, 32(12): 963-967.(1986). van Dam, N. M., & Bouwmeester, H. J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends in plant science, 21(3): 256-265. (2016). Vespermann, A., Kai, M., & Piechulla, B. Rhizobacterial Volatiles Affect the Growth of Fungi and Arabidopsis thaliana. Applied and Environmental Microbiology, 73(17): 5639-5641. (2007). Weise, T., Kai, M., & Piechulla, B. Bacterial ammonia causes significant plant growth inhibition. PLoS One, 8(5): e63538. (2013). Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., & Shirasu, K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 21(9): 2914-2927. (2009). Zou, C. G., Ma, Y. C., Dai, L. L., & Zhang, K. Q. Autophagy protects C. elegans against necrosis during Pseudomonas aeruginosa infection. Proc Natl Acad Sci U S A, 111(34): 12480-12485. (2014).
|