|
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016. [2] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, and language processing, 22(10):1533–1545, 2014. [3] W. Baxter, J. Wendt, and M. C. Lin. Impasto: a realistic, interactive model for paint. In Proc. of the 3rd international symposium on Non-photorealistic animation and rendering, pages 45–148. ACM, 2004. [4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In Advances in neural information processing systems, pages 153–160, 2007. [5] C. M. Bishop and C. Roach. Fast curve fitting using neural networks. Review of scientific instruments, 63(10):4450–4456, 1992. [6] K. Chellapilla, S. Puri, and P. Simard. High performance convolutional neural networks for document processing. In Tenth International Workshop on Frontiers in Handwriting Recognition. Suvisoft, 2006. [7] M.-Y. Chen, C.-S. Yang, and M. Ouhyoung. A smart palette for helping novice painters to mix physical watercolor pigments. In E. Jain and J. Kosinka, editors, Proc. of EuroGraphics 2018, Posters, page April 2018. The Eurographics Association,2018. [8] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin. Computer-generated watercolor. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 421–430. ACM Press/Addison-Wesley Publishing Co., 1997. [9] P. Edström. Examination of the revised kubelka-munk theory: considerations of modeling strategies. JOSA A, 24(2):548–556, 2007. [10] J. Guild et al. The colorimetric properties of the spectrum. Phil. Trans. R. Soc. Lond. A, 230(681-693):149–187, 1931. [11] C. S. Haase and G. W. Meyer. Modeling pigmented materials for realistic image synthesis. ACM Transactions on Graphics (TOG), 11(4):305–335, 1992. [12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. [13] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006. [14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012. [16] P. Kubelka. New contributions to the optics of intensely light-scattering materials. part i. Josa, 38(5):448–457, 1948. [17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989. [18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. [19] W. Mokrzycki and M. Tatol. Colour differenceΔ e-a survey. MGV, 20(4):383–411, 2011. [20] C. Poultney, S. Chopra, Y. L. Cun, et al. Efficient learning of sparse representations with an energy-based model. In Advances in neural information processing systems, pages 1137–1144, 2007. [21] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. [22] D. Steinkraus, I. Buck, and P. Simard. Using gpus for machine learning algorithms. In Document Analysis and Recognition, 2005. Proceedings. Eighth International Conference on, pages 1115–1120. IEEE, 2005. [23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, et al. Going deeper with convolutions. Cvpr, 2015. [24] S. Westland, L. Iovine, and J. M. Bishop. Kubelka-munk or neural networks for computer colorant formulation? In 9th Congress of the International Colour Association, volume 4421, pages 745–749. International Society for Optics and Photonics, 2002. [25] W. D. Wright. A re-determination of the trichromatic coefficients of the spectral colours. Transactions of the Optical Society, 30(4):141, 1929. [26] S. Xu, H. Tan, X. Jiao, F. Lau, and Y. Pan. A generic pigment model for digital painting. In Computer Graphics Forum, volume 26, pages 609–618. Wiley Online Library, 2007. [27] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European conference on computer vision, pages 818–833. Springer, 2014.
|