跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝易成
研究生(外文):Hsieh, Yi-Cheng
論文名稱:具混和式切換及背景誤差校正之12位元連續漸進式類比數位轉換器
論文名稱(外文):12-bit SAR ADC with Mixed Switching and Background Offset Calibration
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
口試委員:李育民廖育德
口試委員(外文):Lee, Yu-MinLiao, Yu-Te
口試日期:2017-09-27
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:79
中文關鍵詞:連續漸進式比較器校正
外文關鍵詞:SAR ADCCalibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為連續漸進暫存器(SAR)類比數位轉換器(ADC)由台灣積體電路製造股份有限公司1P6M0.18um互補式金氧半製程來實現,並具有混和開關切換和校正比較器輸入偏移電壓的機制。在這裡運用了混和開關切換─結合融合式電容切換與單調式切換來節省功率消耗。除此之外,此次設計也運用了電容充放電的電荷泵之類比校正方式以及調整電容負載之數位校正方式來達到較低的偏移電壓。
利用電荷泵校正機制之10百萬赫茲連續漸進式類比數位轉換器在模擬情況為1.8V電壓源且輸入頻率為1.975百萬赫茲時,模擬結果可達66.73dB的訊號雜訊失真比與10.79
bits的有效位元數,整體功率消耗為736.23μW並且FOM為41.58fJ/conversion-step。利用可調整式電容校正機制之50千赫茲連續漸進式類比數位轉換器在模擬情況為1.8V電壓源且輸入頻率為9.876千赫茲時,模擬結果可達72.56dB的訊號雜訊失真比與11.76bits的有效位元數,整體功率消耗為18.31μW並且FOM為105.59fJ/conversion-step。
利用電荷泵校正機制之10百萬赫茲連續漸進式類比數位轉換器在1.8V電壓源和1百萬赫茲的操作頻率下,當輸入頻率為12.3444千赫茲時,量測結果為39.50dB的訊號雜訊失真比及6.27bit的有效位元數,總功率消耗為186.3762µW。
This thesis presents a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC) with mixed switching and offset calibration in TSMC 0.18-µm process. To reduce the switching energy and save the total capacitance, a mixed switching procedure is applied. The mixed switching procedure combines the merged capacitor switching with monotonic switching. Beside, two dynamic comparators with charge pump and adaptive capacitor calibration to achieve lower offset are used.
For the SAR ADC with charge pump at 1.8V supply voltage and 10MHz sampling rate, simulation results achieve 66.73dB signal-to-noise-and-distortion-ratios (SNDR) which lead to 10.79 effective number of bits (ENOB) at 1.975MHz input frequency. Its power consumption is 736.23µW and figure-of-merit (FOM) is 41.58 fJ/conversion-step. For the SAR ADC with adaptive capacitor at 1.8V supply voltage and 50KHz sampling rate, simulation results achieve 72.56dB signal-to-noise-and-distortion-ratios (SNDR) which lead to 11.76 effective number of bits (ENOB) at 9.876KHz input frequency. Its power consumption is 18.31µW and figure-of-merit (FOM) is 105.59 fJ/conversion-step.
For the SAR ADC with charge pump at 1.8V supply voltage and 1MHz sampling rate, measurement results achieve 39.50dB signal-to-noise-and-distortion-ratios (SNDR) which lead to 6.27 effective number of bits (ENOB) at 12.3444KHz input frequency. Its power consumption is 186.3762µW.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 論文架構 2
第二章 類比數位轉換器概論 3
2.1 類比數位轉換器規格參數 3
2.1.1 量化誤差 3
2.1.2 解析度 4
2.1.3 訊號雜訊比 5
2.1.4 訊號雜訊失真比 5
2.1.5 無雜散動態範圍 5
2.1.6 有效位元數 6
2.1.7 偏移誤差及增益誤差 7
2.1.8 微分非線性誤差 7
2.1.9 積分非線性誤差 8
2.1.10 動態範圍 8
2.2 類比數位轉換器架構 9
2.2.1 快閃式類比數位轉換器 10
2.2.2 管線式類比數位轉換器 12
2.2.3 連續漸進式類比數位轉換器 13
2.2.4 結論 14
第三章 連續漸進式類比數位轉換器 16
3.1 連續漸進式類比數位轉換器架構 16
3.2 電容切換方式 18
3.2.1 電荷重新分佈原理 19
3.2.2 傳統式電容切換[12] 20
3.2.3 單調式切換[13] 22
3.2.4 融合式電容切換[14] 23
3.2.5 結論 25
第四章 電路設計與實現 26
4.1 系統架構圖 26
4.2 取樣保持電路 27
4.3 比較器 33
4.3.1 比較器的非理想效應 33
4.3.2 動態式比較器架構 34
4.3.3 電荷泵校正機制 35
4.3.4 可調整式電容校正機制 40
4.4 時脈產生器 43
4.4.1 D型正反器 45
4.5 數位類比轉換器 46
4.5.1 混和式切換[30] 46
4.5.2 控制邏輯 47
4.5.3 電容陣列 49
4.6 模擬結果 50
4.6.1 利用電荷泵校正機制之10百萬赫茲連續漸進式類比數位轉換器 51
4.6.2 利用可調整式電容校正機制之50千赫茲連續漸進式類比數位轉換器 55
4.6.3 電路佈局圖 60
第五章 測試考量與量測結果 63
5.1 量測環境考量 63
5.1.1 電壓調節器 65
5.1.2 印刷電路板 66
5.2 量測結果 67
5.4 量測討論 73
第六章 結論與未來展望 74
6.1 結論 74
6.2 未來展望 75
參考文獻 76
[1] Y. Zhou, B. Xu, Y. Chiu, "A 12 bit 160 MS/s two-step SAR ADC with background bit-weight calibration using a time-domain proximity detector", IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 920-931, Apr. 2015.
[2] C. Wu and J. Yuan, "A 7 Bit 800MSs SAR ADC with Background Offset Calibration," in Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, pp. 1038-1041, Aug. 2016.
[3] H. Huang et al., "A 1.2-GS/s 8-bit Two-Step SAR ADC in 65-nm CMOS with Passive Residue Transfer", IEEE ASSCC Dig. Tech. Papers, pp. 289-292, Nov. 2015.
[4] L. Yu, K. Doris, H. Hegt, and A. H. M. van Roermund, "An 11b Pipeline ADC With Parallel-Sampling Technique for Converting Multi-Carrier Signals," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 906-914, 2012.
[5] N. Verma and A. P. Chandrakasan, "An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes," Solid-State Circuits, IEEE Journal of, vol. 42, pp. 1196-1205, 2007.
[6] P. Wen-Yi, W. Chao-Shiun, C. You-Kuang, C. Nai-Kuan, and W. Chorng-Kuang, "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications," in Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian, pp. 149-152, 2009.
[7] H. Tong-Hun, C. Wen-Hai, Y. Ik-Seok, and K. Oh-Kyong, "A highly area-efficient controller for capacitive touch screen panel systems," Consumer Electronics, IEEE Transactions on, vol. 56, pp. 1115-1122, 2010.
[8] K. Hyoung-Rae, C. Yoon-Kyung, B. San-Ho, K. Sang-Woo, C. Kwang-Ho, A. Hae-Yong, et al., "A mobile-display-driver IC embedding a capacitive-touch-screen controller system," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pp. 114-115, 2010.
[9] K. Ki-Duk, B. San-Ho, C. Yoon-Kyung, B. Jong-Hak, C. Hwa-Hyun, P. Jong-Kang, et al., "A capacitive touch controller robust to display noise for ultrathin touch screen displays," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, pp. 116-117, 2012.
[10] C. Yoon-Kyung, K. Hyoung Rae, J. Wongab, C. MinSoo, W. Zhong-Yuan, K. HyoSun, et al., "An Integrated LDI with Readout Function for Touch-Sensor-Embedded Display Panels," in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp. 134-135, 2007.
[11] M. S. W. Chen and R. W. Brodersen, “A 6 b 600 MS/s 5.3 mW asynchronous ADC in 0.13 m CMOS,” in IEEE ISSCC Dig. Tech. Papers, pp. 574–575, Feb. 2006.
[12] B. P. Ginsburg, A. P. Chandrakasan, "An energy-efficient charge recycling approach for a SAR converter with capacitive DAC", Proc. IEEE ISCAS, pp. 184-187,May 2005.
[13] L. Chun-Cheng, C. Soon-Jyh, H. Guan-Ying, and L. Ying-Zu, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," Solid-State Circuits, IEEE Journal of, vol. 45, pp. 731-740, 2010.
[14] Y. Zhu, C. H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, F. Maloberti, “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol.45, no.6, pp.1111-1121, Jun. 2010.
[15] Y. Wu, X. Cheng, and X. Zeng, “A split-capacitor Vcm-based capacitorswitching scheme for low-power SAR ADCs,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 2014–2017, May 2013.
[16] M. Dessouky and A. Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched op amp circuits," Electronics Letters, vol. 35, pp. 8-10, 1999.
[17] M. Miyahara et al., “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 269–272, Nov. 2008.
[18] S. Babayan Mashhadi, S. Hadi Nasrollaholosseini, H. Sepehrian, and R. Lotfi, “An Offset Cancellation Technique for Comparators Using Body-Voltage Trimming,” NEWCAS, pp. 273-276, June 2011.
[19] J. Lu and J. Holleman, "A low-power high-precision comparator with time-domain bulk-tuned offset cancellation," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, no. 5, pp. 1158-1167, May 2013.
[20] T. Rabuske, F. Rabuske, J. Fernandes and C. Rodrigues, “An 8-bit 0.35-V 5.04-fJ/Conversion-Step SAR ADC With Background Self-Calibration of Comparator Offset,” in IEEE Transactions on very large scale integration (VLSI) systems, vol. 23, no. 7, pp. 1301-1307, July 2015.
[21] D. Schinkel, E. Mensink, E. Klumperink, et al., “A Double-Tail LatchType Voltage Sense Amplifier with 18ps Setup+Hold Time,” ISSCC Dig. Tech. Papers, pp. 314-315, Feb. 2007.
[22] S. Babayan-Mashhadi, R. Lotfi, "Analysis and design of a lowvoltage low-power double-tail comparator", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 343-352, Feb. 2013.
[23] J. S. Lee, "Charge pump with perfect current matching characteristics in phase-locked loops", Electron. Lett., vol. 36, no. 23, pp. 1907-1908, Nov. 2000.
[24] C. Charles, D. Allstot, "A buffered charge pump with zero charge sharing", Proc. Int. Symp. Circuits Syst., pp. 2633-2636, May 2008.
[25] Yeo, Kiat Seng.; Boon, Chirn Chye.; Lim, Wei Meng.; Do, Manh Anh.; Krishna, Manthena Vamshi, "Design and analysis of ultra low power true single phase clock CMOS 2/3 prescaler", IEEE J. Solid-State Circuits, 57(1), January 2010.
[26] W. Guo, S. Mirabbasi, "A low-power 10-bit 50-MS/s SAR ADC using a parasitic-compensated split-capacitor DAC", Proc. IEEE Int. Symp. Circuits Syst., pp. 1275-1278, May 2012.
[27] Y. F. Chen, "Split capacitor DAC mismatch calibration in successive approximation ADC", Proc. IEEE CICC, pp. 279-482, Sep. 2009.
[28] M. Saberi, R. Lotfi, K. Mafinezhad and W. A. Serdijn, "Analysis of Power Consumption and Linearity in Capacitive Digital-to-Analog Converters Used in Successive Approximation ADCs", in IEEE transactions on circuits and systems I: regular papers, vol. 58, no. 8, pp. 1736-1748, Aug. 2011.
[29] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der Plas, and J.Craninckx, “An 820μW 9b 40 MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” ISSCC Dig. Tech. Papers, pp. 238-610, Feb. 2008.
[30] Lin Deng; Chao Yang; Menglian Zhao; Yang Liu; Xiaobo Wu, "A 12bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array," New Circuits and Systems Conference (NEWCAS), 2013 IEEE 11th International, vol., no., pp.1, 4, 16-19 June 2013
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top