跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳奕賓
研究生(外文):Yi-Pin Chen
論文名稱:廊道空間對街廓改善微氣候與減緩空氣污染影響之研究
論文名稱(外文):Studying the Influences of Arcade Space on Improvement of Microclimate and Mitigation of Air Pollution in Urban Street Canyons
指導教授:楊安石楊安石引用關係
口試委員:曾豊育蘇瑛敏李魁鵬楊安石
口試日期:2018-05-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:47
中文關鍵詞:都市街廓自然通風空氣污染廊道
外文關鍵詞:計算流體力學
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前高密度都市街廓中建築物朝密集且高層化發展,致使市中心內高層建築量體群呈現嚴重的弱風甚至無風區域,常導致通風換氣率降低和污染物蓄積。
近年來通風廊道觀念在城市建築規劃、設計與建設過程中逐漸被提出,期望朝著盛行風向建置廊道以導風入市區,使氣流能提高微氣候環境之通風效果,以有效地驅散室外空氣污染和增進室內空氣流通。本研究擬針對高密度都市街廓
之廊道設計建立城市環境建築群模型,藉由計算流體力學(CFD)模擬技術,探討不同廊道設計與構型、通風廊道的設置、盛行風方向、都市街廓之街寬與深度、建築物量體高度和幾何外形等因素對高密度都市街廓之通風透氣與降低污染物擴散、蓄積之影響。本研究另以實地現場量測數據與 CFD 模擬結果比對以驗證微氣候環境預測準確性,探討不同廊道設計配合季節氣象條件,運用數值模擬與多元迴歸分析以發展預測廊道設計策略對都市街廓改善微氣候環境通風透氣
和降低污染物擴散的影響之量化關係。
The development of high-density urban street canyons toward dense high-rise buildings causes the decline of ventilation rate and pollutant accumulation resulting from the breezeless state in the downtown area. Lately, the corridor concept has been extensively proposed during the layout, design and construction processes of city buildings. Corridors are arranged to align with the prevailing wind for bringing the wind into cities, and therefore to disperse the outdoor air pollution and promote the indoor air circulation. This study implements the environmental CFD based analysis
procedures to construct a three-dimensional computational model for replicating the
high-density urban buildings with corridors. By varying the effects of configurations of corridor, shape of buildings, and the distance between two neighboring streets, the iii fluid fields and air pollution dispersal were thoroughly investigated to evaluate the
microclimate environments around the subject building with corridors. Besides, field
measurements were conducted to provide the database for model validation. We then
apply the verified CFD tool to predict the detailed airflow characteristics of urban
environment as well as perform multivariable regression analysis for determining the
correlation of the corridor design parameters with the air exchange rate per hour (ACH)
for ventilation and the lessening of pollutant levels in environs.
摘 要 ................................ i
ABSTRACT ........................... ii
誌謝 ................................... iv
目錄 ................................. v
圖目錄 ...................... vii
表目錄 ........................... viii
第一章 緒論 .............................. 1
1.1 研究背景與動機 ...................... 1
1.2 文獻回顧 .................................... 3
1.2.1 都市街廓空氣污染之相關研究 ...................... 3
1.2.2 廊道設計對減緩空氣污染之發展 ................... 5
1.2.3 CFD 在建築風場的運用 ...................... 7
1.3 研究目的 ........................ 7
1.4 研究方法 .......................... 8
第二章 實地量測與實驗方法 ......................... 10
2.1 實驗案例 .................................... 10
2.2 實驗設備 ............. 11
2.3 現場量測 .................. 12
第三章 理論分析 .................. 14
3.1 基本假設與統御方程式 ................... 14
3.1.1 統御方程式 .................. 14
3.1.2 Realizable k-ε 紊流模式 ............ 15
3.2 物種傳遞模型(Species Transport Model) ............ 15
3.3 大氣邊界層理論 ..................... 16
3.3.1 大氣邊界層之風速剖面 .................... 23
3.4 邊界條件 ....................... 24
3.5 數值方法 ......................... 27
第四章 結果與討論 ........................ 31
4.1 網格獨立性測試 ............. 31
4.2 實測與數值分析驗證 ............ 34
4.3 廊道設計因子 ..................... 35
4.4 數值模擬結果分析 ................. 36
4.4.1 速度場分析 ..................... 36
4.4.2 濃度場分析 ................ 37
4.5 微氣候環境評估 ............ 39
4.5.1 換氣量評估 ................ 39
4.5.2 污染環境評估 ................... 40
第五章 結論 ..................... 41
參考文獻 .................... 42
[1] 李振綱,建築研究簡訊第 72 期(專題報導),中國民國內政部建築研究所,2011。
[2] Pavageau M, Schatzmann M. Wind tunnel measurements of concentration
fluctuations in an urban street canyon. Atmospheric Environment. 1999; 24-
25:3961-71.
[3] Yassin MF, Kato S, Ooka R, Takahashi T, Kouno R. Field and wind tunnel study of
pollutant dispersion in a built-up area under various meteorological conditions.
Journal of Wind Engineering and Industrial Aerodynamics. 2005; 5:361-382.
[4] Kastner-Klein P, Plate E. Gaseous pollutant dispersion around urban-canopy
elements: wind-tunnel case studies: International Journal of Environment Pollutant.
1997; 3-6:727-737.
[5] Macdonald RW, Grisths RF, Cheah SC. Field experiments of dispersion through
regular arrays of cubic structures. Atmospheric Environment. 1997; 6:783-795.
[6] Mavroidis I, Griffiths RF, Hall DJ. Field and wind tunnel investigations of plume
dispersion around single surface obstacles. Atmospheric Environment. 2003;
21:2903-2918.
[7] Higson HL, Griffiths RF, Jones CD and Hall DJ. Concentration measurements
around an isolated building. A comparison between wind tunnel and field data.
Atmospheric Environment. 1994; 11:1827-1836.
[8] Capentieri M, Cori A, Zipoli L. Wind tunnel experiments of tracer gas dispersion
downwind from a small-scale physical model of a landfill. Environmental Modelling
and Software. 2004; 10:881-885.
[9] Mfula AM, Kukadia V, Griffiths RF, Hall DJ. Wind tunnel modelling of urban
building exposure to outdoor pollution. Atmospheric Environment. 2005; 15:2737-
2745.
[10] Sada K. Wind tunnel experiment of tracer gas diffusion within unstable boundary
layer over coastal region. Atmospheric Environment. 2002; 30:4757-4766.
[11] 王遠成、吳文權與付小平。城市大氣中污染物擴散的施密特術研究。上海理
工大學學報,30(6):519-522。
[12] Santos JM, Reis NC Jr, Goulart EV, Mavroidis I. Numerical simulation of flow and
dispersion around an isolated cubical building. The effect of the atmospheric
stratification. Atmospheric Environment 2009; 34:5484-5492.
[13] Li Y, Stathopoulos T. Numerical evaluation of wind-induced dispersion of pollutants
around a building. Journal of Wind Engineering and Industrial Aerodynamics. 1997;
67-68:757-66.
[14] Chow TT, Lin Z, Bai W. The integrated effect of medical lamp position and diffuser
discharge velocity on ultra-clean ventilation performance in an operating theatre.
Indoor and Built Environment. 2006; 4:315-331.
[15] Taeyeon Kim, Shinsuke Kato, Shuzo Murakami. Indoor cooling/heating load
analysis based on coupled simulation of convection radiation and HVAC control.
Building and Environment. 2001; 36:901-908.
[16] Donaldson AI, Alexandersen S. Predicting the spread of foot and mouth disease by
airborne virus. Revscitech.off.int.Epiz. 2002; 21(3):569-575.
[17] Li Y, Huang X, Yu I. T. S. Qian H. Role of air distribution in SARS transmission
during the largest nosocomial outbreak in Hong Kong, Indoor Air. 2004; 15:83-95.
[18] C H Chang, R N Meroney. Numerical and physical modeling of bluff body flow and
dispersion in urban street canyons. Journal of Wind Engineering and Industrial
Aerodynamics. 2001; 89(14-15):1325-1334.
[19] 王曉琳,順義建清風廊道送風進城吹霧霾,新京報網,2016。
[20] 李偉誠,Using the Design Variables of Street Canyon to Evaluate the Wind
Environment in Outdoor Pedestrian Area of Major Cities in Taiwan,國立成功大
學都市計劃學系碩博士班論文,2010。
[21] 黃心瑤,亞熱帶騎樓建築風環境影響之研究,國立台北科技大學建築與都市
設計研究所碩士論文,2014。
[22] Yu-Hsuan Juan, An-Shink Yang, Chih Yung Wen, Yee-Ting Lee, Po-Chun
Wang. Optimization procedures for enhancement of city breathability using
arcade design in a realistic high-rise urban area. Building and Environment
2017; 121:247-261.
[23] Taeyeon Kim, Byungseon Sean Kim, Kwangho Kim. A wind tunnel experiment and
CFD analysis on airflow performance of enclosed-arcade markets in Korea.
Building and Environment. 2010; 45(5):1329-1338.
[24] Jiang He, Akira Hoyano. Measurement and evaluation of the summer microclimate
in the semi-enclosed space under a membrane structure. Building and Environment.
2010; 45:230-242.
[25] Youngryel Ryu, Seogcheol Kim, Dowon Lee. The influence of wind flows on
thermal comfort in the Daechung of a traditional Korean house. Building and
Environment. 2009; 44(1):18-26.
[26] Jian Hanga, Zhiwen Luob, Mats Sandbergc, Jian Gongd. Natural ventilation
assessment in typical open and semi-open urban environments under various wind
directions. Building and Environment. 2013; 70:318-333.
[27] ANSYS, Theory Guide 4.3.3, Realizable k-ε model.
[28] Launder, B.E., Spalding D.B. The numerical computation of turbulent flows.
Computer Methods in Applied Mechanics and Engineering. 1974; 3:269-89.
[29] Launder, B.E., Spalding D.B. Mathematical models of turbulence. London:
Academic Press.1972.
[30] Launder B. E., Spalding, D. B. Editor, Lectures in Mathematical Models of
Turbulence, Academic Press publishers, London, 1972.
[31] S.M. Salim, R. Buccolieri, A. Chan, S. Di Sabatino. Numerical simulation of
atmospheric pollutant dispersion in an urban street canyon: comparison
between RANS and LES. Journal of Wind Engineering and Industrial
Aerodynamics. 2011; 99:103-113.
[32] M. Wang, C. H. Lin, Q. Y. Chen. Advanced turbulence models for predicting
transport in enclosed environments. Building and Environment. 2012; 47:40-49.
[33] Z. Zhang, Q. Chen. Experimental measurements and numerical simulations of
particle transport and distribution in ventilated rooms. Atmospheric
Environment. 2006; 40:3396-3408.
[34] Ansys 14.0, User’s manual, ANSYS, Inc. 2012.
[35] Y. Tominaga, T. Stathopoulos. Turbulent Schmidt numbers for CFD analysis
with various types of flow field. Atmospheric Environment 2007; 41:8091-
8099.
[36] S. Di Sabatino, R. Buccolieri, B. Pulvirenti, R. Britter. Simulations of pollutant
dispersion within idealized urban-type geometries with CFD and integral
models. Atmospheric Environment. 2007; 41:8316-8329.
[37] M. Chavez, B. Hajra, T. Stathopoulos, A. Bahloul. Near-field pollutant
dispersion in the built environment by CFD and wind tunnel simulations.
Journal of Wind Engineering and Industrial Aerodynamics. 2011; 99:330-339.
[38] 朱佳仁,環境流體力學,台北:科技圖書出版公司,2003。
[39] Davenport, A.G. The relationship of wind structure to wind loading. International
Conference on the Wind Effects on Buildings and Structures. National Physical
Laboratory. Teddington, Middlesex, England. 1963; 2:26-28.
[40] 內政部營建署,建築物耐風設計規範及解說,營建雜誌社,2006。
[41] Plate, E.J., & Kiefer, H. Wind loads in urban areas. Journal of Wind Engineering
and Industrial Aerodynamics. 2001;89:1233-1256.
[42] Wieringa, J. Updating the Davenport roughness classification. Journal of Wind
Engineering and Industrial Aerodynamics. 1992; 41:357-368.
[43] Hellman, G. Über die Bewegung der Luft in den untersten Schichten der
Atmosphäre, Meteorol. Z. 1916; 34:273.
[44] Simiu, E., Scanlan, R.H. Wind effects on structures: An introduction to wind
engineering. New York: Wiley. 1986.
[45] JANG Y., KIM J. Total SO2 emission control strategies for the management of
air pollution in Ulsan industrial complex. Atmospheric Environment. 1987; 21(3):469-477.
[46] Van Doormaal JP, Raithby GD. Enhancements of The SIMPLE Method for
Predicting Incompressible Fluid Flows. Numerical Heat Transfer. 1984; 7:147-
163.
[47] Hooff T., Blocken, B. On the effect of wind direction and urban surroundings on
natural ventilation of a large semi-enclosed stadium. Computers & Fluids. 2010;
39(7):1146-1155.
[48] Lin M, Hang J, Li Y, Luo Z, Sandberg M. Quantitative ventilation assessments of
idealized urban canopy layers with various urban layouts and the same building
packing density. Building and Environment. 2014;79:152-67.
[49] Bady M, Kato S, Huang H. Towards the application of indoor ventilation efficiency
indices to evaluate the air quality of urban areas. BAE Building and Environment.
2008;43:1991-2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top