跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝凱如
研究生(外文):Kai-Ju Hsieh
論文名稱:新穎胜肽對於促進大鼠學習與記憶之研究
論文名稱(外文):Novel Peptides Enhance Learning and Memory in Rats
指導教授:楊瀅臻
指導教授(外文):Ying-Chen Yang
口試委員:郭村勇黃乃瑰黃春霖
口試委員(外文):Tsun-Yung KuoNai-Kuei HuangChuen-Lin Huang
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術與動物科學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:小分子胜肽學習與記憶失智症
外文關鍵詞:Small molecule peptidelearning and memoryDementia
相關次數:
  • 被引用被引用:2
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
失智症是一種腦部疾病,其症狀有記憶力退化、反應遲緩、理解及表達能力下降、重複說話等,嚴重者將影響個體的日常運作。記憶力退化主要原因為腦神經細胞持續退化或是死亡,使訊息無法順利的傳遞所導致。成年人的突觸具有可塑性,透過學習及環境的刺激可改變神經突的生長,加強突觸的化學訊息傳遞能力,進而形成記憶並鞏固之。因此,如果能促進腦部神經可塑性,理論上將可強化記憶的形成。許多神經滋養因子,如:腦源性神經滋養因子(Brain-derived neurotrophic factor, BDNF)、膠細胞源性神經滋養因子(glial cell line-derived neurotrophic factor, GDNF)、類胰島素生長因子 (insulin-like growth factors, IGF)等,已經被證實可以促進神經細胞可塑性,進而改善記憶。然而,這類大分子蛋白,往往具有體內結構不穩定、半衰期短、不易通過血腦屏障等問題。由於胜肽藥物具有藥用劑量小、副作用低、易於進入細胞內等優點,因此具有開發優勢。本研究之目的是從我們自行設計的四十條胜肽中,篩選出能影響神經可塑性並促進記憶者,作為藥物開發之候選者。我們以細胞免疫螢光染色法篩選出能夠促進初代海馬迴神經突生長之胜肽,再進一步以莫氏水迷津、被動單向抑制逃避試驗、被動逃避跳台試驗及新穎物體辨識能力測試等記憶相關之動物實驗檢測此胜肽對於記憶障礙大鼠學習與記憶之影響。結果顯示胜肽能促進正常大鼠之空間學習,且能改善經東莨菪鹼或年齡誘導之記憶障礙大鼠的學習與記憶能力,未來將進一步探討其作用機轉。
Dementia is the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. Loss of memory is mainly due to continued degeneration or death of neurons and results in the failure of neural signal transmission. Adult synaptic plasticity such as neurite outgrowth, synaptic transmission, and the formation of memories is strengthened through learning and enriched environmental stimulation. Substances that promote brain neural plasticity, theoretically enhance memory formation as well. Many neurotrophic factors, including brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), insulin-like growth factor (IGF) have been shown to promote neural plasticity as well as memory formation. However, such large proteins usually encountered structural instability, shorter half-life, and are unable to cross the blood brain barrier in vivo. Since peptides play a crucial role in the physiological and biochemical functions, peptide drugs now attracted attention for their potential therapeutic use. Compared with small chemical entity drugs, peptide-based drugs possess certain favorable characteristics, including higher potency, higher selectivity, and better safety. In the present study, forty of peptides were designed and synthesized for neuronal growth assay. Peptides which showed significant effect on neurite outgrowth were selected. The effects of these peptides were further examined by Morris water maze, passive one-way inhibitory avoidance test, passive avoidance step-down test and novel object recognition test for their potential roles in learning and memory. Our results indicate that peptides enhanced learning and memory formation in both naïve, scopolamine-induced and age-derived memory decline amnesia animals. The underlying mechanism of these novel peptides will be further investigated in the future.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
第一章、緒論 1
第一節、神經可塑性 1
(一)神經元生長 1
(二)細胞骨架與可塑性之關係 2
第二節、學習與記憶的形成 3
第三節、失智症 3
第四節、促進記憶之藥物 5
(一)神經滋養因子 5
(二)小分子藥物與可塑性/促進記憶之研究 5
第五節、記憶相關動物實驗 6
第六節、記憶缺失動物模式 7
第七節、研究目的 7
第八節、實驗設計 7
第二章、材料與方法 8
第一節、藥物來源及配製 8
第二節、動物來源及飼養 8
第三節、細胞培養 8
第四節、細胞存活率分析 8
第五節、免疫螢光染色 9
第六節、共軛焦顯微鏡 9
第七節、西方墨點法 9
(一)細胞蛋白質萃取 9
(二)西方墨點法 10
第八節、藥物給予方式 10
(一)正常大鼠 10
(二)藥物誘導記憶障礙模式之大鼠 10
(三)正常老化之大鼠 11
第九節、莫氏水迷津 11
第十節、被動單向抑制逃避學習測驗 11
第十一節、被動逃避跳台測驗 12
第十二節、新穎物體辨識能力測驗 12
第十三節、灌流 12
第十四節、免疫組織染色 13
第十五節、統計分析 13
第三章、結果 14
第一節、胜肽影響神經可塑性 14
(一)胜肽能促進海馬迴神經元生長 14
(二)胜肽增加軸突長度與分枝數 14
第二節、胜肽不會影響神經元存活 15
第三節、胜肽對於細胞骨架蛋白之影響 15
第四節、胜肽能促進正常大鼠的空間學習與記憶表現 16
第五節、胜肽可改善經東莨菪鹼誘導的空間學習和記憶障礙 17
第六節、胜肽可改善經東莨菪鹼誘導的被動單向逃避記憶障礙 17
第七節、胜肽可改善經東莨菪鹼誘導的被動逃避跳台之記憶障礙 18
第八節、胜肽可改善經東莨菪鹼誘導的新穎物體辨識能力 18
第九節、胜肽可改善正常老化之大鼠的空間學習和記憶障礙 19
第十節、胜肽可改善正常老化之大鼠的被動單向逃避記憶障礙 20
第十一節、胜肽可增加大鼠生存壽命 20
第十二節、胜肽能穿透細胞膜作用於細胞質及細胞核 21
第十三節、胜肽能對於大鼠腦部神經元之影響 21
第四章、討論 22
第五章、結論與未來展望 24
第六章、圖 25
附錄 47
參考文獻 48

Alkon, D. L., T. J. Nelson, W. Zhao, and S. Cavallaro. (1998). Time domains of neuronal Ca2+ signaling and associative memory: steps through a calexcitin, ryanodine receptor, K+ channel cascade. Trends in neurosciences 21: 529-537.
Allen, S. J., J. J. Watson, D. K. Shoemark, N. U. Barua, and N. K. Patel. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & therapeutics 138: 155-175.
Allen, Y. S., T. E. Adrian, J. M. Allen, K. Tatemoto, T. J. Crow, S. R. Bloom, and J. M. Polak. (1983). "Neuropeptide Y distribution in the rat brain". Science (New York, N.Y.) 221: 877-879.
Alomari, M., F. Omar, K. H. Khabourb, M. A. Alzoubic, and Alzubib. (2013). Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels. Behavioural brain research 247: 34-39.
Araujo, J. A., C. M. Studzinski, and N. W. Milgram. (2005). Further evidence for the cholinergic hypothesis of aging and dementia from the canine model of aging. Progress in neuro-psychopharmacology & biological psychiatry 29: 411-422.
Bourne, J. N., and K. M. Harris. (2008). Balancing structure and function at hippocampal dendritic spines. Annual review of neuroscience 31: 47-67.
Bryan, K. J., H. Lee, G. Perry, M. A. Smith, and G. Casadesus. (2009). Transgenic Mouse Models of Alzheimer's Disease: Behavioral Testing and Considerations. In: J. J. Buccafusco (ed.) Methods of Behavior Analysis in Neuroscience. Frontiers in Neuroscience, Boca Raton (FL).
Craddock, T. J., J. A. Tuszynski, and S. Hameroff. (2012). Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation? PLoS computational biology 8: e1002421.
Croce, N., M. T. Ciotti, F. Gelfo, S. Cortelli, G. Federici, and C. Caltagirone. (2012). Neuropeptide Y protects rat cortical neurons against beta-amyloid toxicity and re-establishes synthesis and release of nerve growth factor. ACS chemical neuroscience 3: 312-318.
Cross, D., J. Dominguez, R. B. Maccioni, and J. Avila. (1991). MAP-1 and MAP-2 binding sites at the C-terminus of beta-tubulin. Studies with synthetic tubulin peptides. Biochemistry 30: 4362-4366.
Dayhoff, J., S. Hameroff, R. Lahoz-Beltra, and C. E. Swenberg. (1994). Cytoskeletal involvement in neuronal learning: a review. European biophysics journal : EBJ 23: 79-93.
Dehmelt, L., and S. Halpain. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome biology 6: 204.
Goedert, M., R. A. Crowther, and C. C. Garner. (1991). Molecular characterization of microtubule-associated proteins tau and MAP2. Trends in neurosciences 14: 193-199.
Gopnik, A., A. N. Meltzoff, and P. K. Kuhl. (1999). The scientist in the crib: Minds, brains, and how children learn. William Morrow & Co.
Gozes, I., B. H. Morimoto, J. Tiong, A. Fox, K. Sutherland, D. Dangoor, M. Holser-Cochav, K. Vered, P. Newton, and P. S. Aisen. (2005). NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS drug reviews 11: 353-368.
Gozes, I., R. Alcalay, E. Giladi, A. Pinhasov, S. Furman, and D. E. Brenneman. (2002). NAP accelerates the performance of normal rats in the water maze. Journal of molecular neuroscience : MN 19: 167-170.
Gozes, I., T. Iram, E. Maryanovsky, C. Arviv, L. Rozenberg, Y. Schirer, E. Giladi, S. Furman-Assaf. (2014). Novel tubulin and tau neuroprotective fragments sharing structural similarities with the drug candidate NAP (Davuentide). Journal of Alzheimer's disease : JAD 40 Suppl 1: S23-36.
Gundersen, G. G., and T. A. Cook. (1999). Microtubules and signal transduction. Current opinion in cell biology 11: 81-94.
Haass, C., and D. J. Selkoe. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature reviews. Molecular cell biology 8: 101-112.
Harrill, J. A., T. M. Freudenrich, B. L. Robinette, and W. R. Mundy. (2011). Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicology and applied pharmacology 256: 268-280.
Heidemann, S. R., J. M. Landers, and M. A. Hamborg. (1981). Polarity orientation of axonal microtubules. The Journal of cell biology 91: 661-665.
Hempstead, B. L. (2006). Dissecting the diverse actions of pro- and mature neurotrophins. Current Alzheimer research 3: 19-24.
Heo, Y. M., M. S. Shin, J. M. Lee, C. J. Kim, S. B. Baek, K. H. Kim, and S. S. Baek. (2014). Treadmill exercise ameliorates short-term memory disturbance in scopolamine-induced amnesia rats. International neurourology journal 18: 16-22.
Hirokawa, N. (1994). Microtubule organization and dynamics dependent on microtubule-associated proteins. Current opinion in cell biology 6: 74-81.
Hirokawa, N., Y. Shiomura, and S. Okabe. (1988). Tau proteins: the molecular structure and mode of binding on microtubules. The Journal of cell biology 107: 1449-1459.
Hongpaisan, J., and D. L. Alkon. (2007). A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proceedings of the National Academy of Sciences of the United States of America 104: 19571-19576.
Iwasaki, K., K. R. Isaacs, and D. M. Jacobowitz. (1998). Brain-derived neurotrophic factor stimulates neurite outgrowth in a calretinin-enriched neuronal culture system. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 16: 135-145.
Johnson, G. V., and R. S. Jope. (1992). The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. Journal of neuroscience research 33: 505-512.
Jouroukhin, Y., R. Ostritsky, and I. Gozes. (2012). D-NAP prophylactic treatment in the SOD mutant mouse model of amyotrophic lateral sclerosis: review of discovery and treatment of tauopathy. Journal of molecular neuroscience : MN 48: 597-602.
Kellner, Y., G. Nina, D. Tobias, T. Nils, Z. Marta, and K. Martin. (2014). The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Frontiers in synaptic neuroscience 6: 5.
Kiryushko, D., V. Berezin, and E. Bock. (2004). Regulators of Neurite Outgrowth: Role of Cell Adhesion Molecules. Annals of the New York Academy of Sciences 1014: 140-154.
Kosik, K. S., and E. A. Finch. (1987). MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. The Journal of neuroscience : the official journal of the Society for Neuroscience 7: 3142-3153.
Lawlor, P. A., R. J. Bland, P. Das, R. W. Price, V. Holloway, L. Smithson, B. L. Dicker, M. J. During, D. Young, and T. E. Golde. (2007). Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Abeta levels. Molecular neurodegeneration 2: 11.
Leader, B., Q. J. Baca, and D. E. Golan. (2008). Protein therapeutics: a summary and pharmacological classification. Nature reviews. Drug discovery 7: 21-39.
Lee, B., B. Sur, J. Shim, D. H. Hahm, and H. Lee. (2014). Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. BMC complementary and alternative medicine 14: 338.
Lee, S., M. Tong, S. Hang, C. Deochand, and S. de la Monte. (2013). CSF and Brain Indices of Insulin Resistance, Oxidative Stress and Neuro-Inflammation in Early versus Late Alzheimer's Disease. Journal of Alzheimer's disease & Parkinsonism 3: 128.
Lim, C. S., and D. L. Alkon. (2014). PKCe promotes HuD-mediated neprilysin mRNA stability and enhances neprilysin-induced Aβ degradation in brain neurons. PloS one 9: e97756.
Lim, J. Y., C. P. Reighard, and D. C. Crowther. (2015). The pro-domains of neurotrophins, including BDNF, are linked to Alzheimer's disease through a toxic synergy with Aβ. Human molecular genetics 24: 3929-3938.
Lozano, R., M. Naghavi, K. Foreman, S. Lim, K.Shibuya, V. Aboyans, J. Abraham, T. Adair, R. Aggarwal, S. Y. Ahn, M. Alvarado, H. R. Anderson, L. M. Anderson, A. D. Lopez, C. J. Murray, M. A. AlMazroa, Z. A. Memish. et al., (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 380: 2095-2128.
Magen, I, and I. Gozes. (2013). Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP) Neuropeptides 47: 489-495.
Mandell, J. W., and G. A. Banker. (1996). Microtubule-associated proteins, phosphorylation gradients, and the establishment of neuronal polarity. Perspectives on developmental neurobiology 4: 125-135.
Martorana, A., Z. Esposito, and G. Koch. (2010). Beyond the cholinergic hypothesis: do current drugs work in Alzheimer's disease? CNS neuroscience & therapeutics 16: 235-245.
Mayeux, R., and Y. Stern. (2012). Epidemiology of Alzheimer disease. Cold Spring Harbor perspectives in medicine 2.
McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science (New York, N.Y.) 153: 1351-1358.
McNicol, A., and C.A. Robson. (1997). Thrombin receptor-activating peptide releases arachidonic acid from human platelets: a comparison with thrombin and trypsin. The Journal of pharmacology and experimental therapeutics 281: 861-867.
Mitchison, T., and M. Kirschner. (1988). Cytoskeletal dynamics and nerve growth. Neuron 1: 761-772.
Morales, J. O., and J. T. McConville. (2014). Novel strategies for the buccal delivery of macromolecules. Drug development and industrial pharmacy 40: 579-590.
Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of neuroscience methods 11: 47-60.
Mufson, E. J., L. Mahady, D. Waters, S. E. Counts, S. E. Perez, S. T. DeKosky, S. D. Ginsberg, M. D. Ikonomovic, S. W. Scheff, and L. I. Binder. (2015). Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience.
Olmsted, J. B. (1986). Microtubule-associated proteins. Annual review of cell biology 2: 421-457.
Paglini, G., L. Peris, F. Mascotti, S. Quiroga, and A. Caceres. (2000). Tau protein function in axonal formation. Neurochemical research 25: 37-42.
Park, J., S. Kim, T. Al-Hilal, O. Jeon, H. Moon and Y. Byun. (2010). Strategies for Oral Delivery of Macromolecule Drugs. Biotechnology and Bioprocess Engineering 15: 66-75.
Quintana, F. J., R. Zaltzman, R. Fernandez-Montesinos, J. L. Herrera, I. Gozes, I. R. Cohen, and D. Pozo. (2006). NAP, a peptide derived from the activity-dependent neuroprotective protein, modulates macrophage function. Annals of the New York Academy of Sciences 1070: 500-506.
Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 361: 1545-1564.
Revilla, S., S. Ursulet, M. J. Álvarez-López, M. Castro-Freire, U. Perpiñá, Y. García-Mesa, A. Bortolozzi, L. Giménez-Llort, P. Kaliman, R. Cristòfol, C. Sarkis, C. Sanfeliu. (2014). Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS neuroscience & therapeutics 20: 961-972.
Santos, V. V., D. B. Santos, G. Lach, A. L. Rodrigues, M. Farina, T. C. De Lima and R. D. Prediger. (2013). Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-beta (Abeta(1-40)) administration in mice. Behavioural brain research 244: 107-115.
Selkoe, D. J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiological reviews 81: 741-66.
Senechal, Y., P. H. Kelly, and K. K. Dev. (2008). Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behavioural brain research 186: 126-132.
Serrano, L., J. Avila, and R. B. Maccioni. (1984). Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry 23: 4675-4681.
Sheetz, M. P., K. K. Pfister, J. C. Bulinski, and C. W. Cotman. (1998). Mechanisms of trafficking in axons and dendrites: implications for development and neurodegeneration. Progress in neurobiology 55: 577-594.
Sheng, M., B. L. Sabatini, and T. C. Sudhof. (2012). Synapses and Alzheimer's disease. Cold Spring Harbor perspectives in biology 4.
Shin, M. K., H. G. Kim, and K. L. Kim. (2011). A novel trimeric peptide, Neuropep-1 stimulating brain-derived neurotrophic factor expression in rat brain improves spatial learning and memory as measured by the Y-maze and Morris water maze. Journal of neurochemistry 116: 205-216.
Shin, M. K., H. G. Kim, S. H. Baek, W. R. Jung, D. I. Park, J. S. Park, D. G. Jo, and K. L. Kim. (2014). Neuropep-1 ameliorates learning and memory deficits in an Alzheimer's disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques. Neurobiology of aging 35: 990-1001.
Spielman, L. J., J. P. Little, and A. Klegeris. (2014). Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. Journal of neuroimmunology 273: 8-21.
Sun, M. K., T. J. Nelson, and D. L. Alkon. (2015). Towards universal therapeutics for memory disorders. Trends in pharmacological sciences 36: 384-394.
Tokuda, M., and O. Hatase. (1998). Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Molecular neurobiology 17: 137-156.
Toso, L., M. Endres, J. Vink, D. T. Abebe, D. E. Brenneman, and C. Y. Spong. (2006). Learning enhancement with neuropeptides. American journal of obstetrics and gynecology 194: 1153-1158; discussion 1158-1159.
Vastag, B. (2010). Biotechnology:Crossing the barrier. Nature 466: 916-918.
West, A. E., W. G. Chen, M. B. Dalva, R. E. Dolmetsch, J. M. Kornhauser, A. J. Shaywitz, M. A. Takasu, X. Tao, and M. E. Greenberg. (2001). Calcium regulation of neuronal gene expression. Proceedings of the National Academy of Sciences of the United States of America 98: 11024-11031.
Wiche, G. (1989). High-Mr microtubule-associated proteins: properties and functions. The Biochemical journal 259: 1-12.
Wong, E., S. Sangadala, S. D. Boden, K.Yoshioka, W. C. Hutton, C. Oliver., and L. Titus. (2013). A novel low-molecular-weight compound enhances ectopic bone formation and fracture repair. The Journal of bone and joint surgery. American volume 95: 454-461.
Woolf, N. J. (1998). A structural basis for memory storage in mammals. Progress in neurobiology 55: 59-77.
Yoo, D. Y., W. Kim, K. Y. Yoo, C. H. Lee, J. H. Choi, I. J. Kang, Y. S. Yoon, D. W. Kim, M. H. Won, and I. K. Hwang. (2011). Effects of Nelumbo nucifera rhizome extract on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia animal model. Phytotherapy research : PTR 25: 809-815.
Zhang, Z., M. Song, X. Liu, S. S. Kang, I. S. Kwon, D. M. Duong, N. T. Seyfried, W. T. Hu, Z. Liu, J. Z. Wang, L. Cheng, Y. E. Sun, S. P. Yu, A. I. Levey, and K. Ye. (2014). Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nature medicine 20: 1254-1262.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top