跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許祐愷
研究生(外文):Yu-Kai Hsu
論文名稱:電沉積硫化鎳薄膜之研究:沉積機制探討及其於混合式超級電容器之應用
論文名稱(外文):Electrodeposition of Nickel Sulfide Thin Film : Study of Mechanism and Application of Hybrid supercapacitors
指導教授:林正裕林正裕引用關係
指導教授(外文):Jeng-Yu Lin
口試委員:林正裕
口試委員(外文):Jeng-Yu Lin
口試日期:2018-07-13
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:99
中文關鍵詞:超電容電沉積硫化鎳
外文關鍵詞:supercapacitorselectrodepositionNickel sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,已藉由循環伏安法(Cycle Voltammetry, CV)及X光射線電子能譜儀(X-ray photoelectron spectroscopy, XPS)成功推導出硫化鎳電沉積機制,其反應式為:3[NiTU]2+ + 6e− → Ni3S2 + 2CN- + 2NH4+ + TU。而在電沉積過程中也探討硫脲(Thiourea, TU)所扮演的角色,經由微流體裝置(Microfluidic device)、電化學石英晶體微天平(Electrochemical Quartz Crystal Microbalance, EQCM)及一些電化學檢測後發現隨著TU濃度的增加,其還原電流、沉積速率等皆有明顯的增加,因此證明TU不只可以提供硫的來源,在電沉積過程中也扮演加速劑的角色。
另外,本研究也使用脈衝-反轉(Pulse-Reverse, PR)電沉積方法調整不同氧化電位成功製備出各式奈米結構的硫化鎳電極(Ni3S2、NiS、NiS/ Ni3S2)於碳纖維布(Carbon Fiber Cloth, CFC)上。於1 M KOH電性檢測中,在電流密度2 A g-1下NiS/ Ni3S2電極擁有不錯的比電容量達170.9 mAh g-1且在電流密度10 A g-1下電容保留率可達65%。此外,以具奈米片狀結構之NiS/Ni3S2電極為正極和經酸化處理的活性碳(Acidified Activated Carbon, AAC)作為負極組成混合式超級電容器,在電流密度2 A g-1下除了有40.9 mAh g-1的比電容量,同時具有38.1 Wh kg-1的能量密度及1861 W kg-1的功率密度。
In this study, the nickel sulfide electrodeposition mechanism has been successfully derived by cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). Its reaction formula is: 3[NiTU]2+ + 6e− → Ni3S2 + 2CN- + 2NH4+ + TU. Besides, the role of thiourea (TU) in the electrodeposition process is also studied via microfluidic device, electrochemical quartz crystal microbalance (EQCM) and some electrochemical measurements. It shows that the reduction current and deposition rate increased significantly with the increase of TU concentration. Therefore, it is proved that TU can not only provide the source of sulfur, but also act as an accelerator in the electrodeposition process.
In addition, this study further employed pulse-reversal (PR) electrodeposition methods to adjust the different oxidation potentials that successfully prepared various of nanostructure of nickel sulfide electrodes (Ni3S2, NiS and NiS/Ni3S2) in carbon fiber cloth (CFC). The resultant NiS/Ni3S2 electrode has a good specific capacity of 170.9 mAh g-1 at a current density of 2 A g-1 and a capacity retention rate of 65% at a current density of 10 A g-1. Furthermore, the NiS/Ni3S2 as a positive electrode and acidified activated carbon (AAC) as a negative electrode to fabricate a hybrid supercapacitor. It exhibits the high specific capacity of 40.9 mAh g-1 at 2 A g-1 and has an energy density of 38.1 Wh kg-1 and a power density of 1861 W kg-1.
Abstract I
摘要II
LIST OF CONTENT IV
LIST OF FIGURES VI
LIST OF TABLES XII
LIST OF SCHEME XIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEWS 3
2.1 Electric double-layer capacitors 3
2.2 Pseudocapacitors 15
2.2.1 Conducting polymer 15
2.2.2 Ruthenium oxide and manganese oxide 21
2.3 Battery type electrodes 26
2.3.1 Nickel and Cobalt oxide/hydroxides 26
2.3.2 Nickel sulfide electrodes 32
2.3.3 Composite material electrode 32
2.4 Hybrid supercapacitors 34
2.5 Motivation 37
CHAPTER 3 EXPERIMENTAL 38
3.1 Role of thiourea additive and its mechanism on the electrodeposition of Ni3S2 38
3.1.1 Preparation of substrate and deposition baths 38
3.1.2 Electrochemical measurements and characterization techniques 38
3.1.2.1 Microfluidic device 40
3.1.2.2 Electrochemical Quartz Crystal Microbalance 42
3.2 Pulse-reversal electrodeposition of nickel sulfide as a cathode material for hybrid supercapacitors 44
3.2.1 Preparation of nickel sulfide electrodes of different composition 44
3.2.2 Preparation of acidified activated carbon 46
3.2.3 Assembly of hybrid SCs 47
3.2.4 Characterization and electrochemical measurements 48
CHAPTER 4 RESULT AND DISCUSSION 49
4.1 Role of thiourea additive and its mechanism on the electrodeposition of Ni3S2 49
4.2 Pulse-reversal electrodeposition of nickel sulfide as a cathode material for hybrid supercapacitors 64
4.2.1 XRD studies 64
4.2.2 Morphology studies 65
4.2.3 CV studies of the various nickel sulfide electrodes 69
4.2.4 Charge/discharge measurement of the various nickel sulfide electrodes 71
4.2.5 EIS measurements of the various nickel sulfide electrodes 74
4.2.6 Cycling performance of the various nickel sulfide electrodes 77
4.2.7 Electrochemical measurements of AAC electrode 82
4.2.8 NiS/Ni3S2//AAC hybrid supercapacitor 84
CHAPTER 5 CONCLUSION 89
REFERENCE 90
1.VA. Boicea, Proceedings of the IEEE, 1777 (2014).
2.G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012).
3.A. L. M. Reddy, S. R. Gowda, M. M. Shaijumon and P. M. Ajayan, Adv. Mater., 24, 5045 (2012).
4.X. Luo, J. Wang, M. Dooner and J. Clarke, Applied Energy, 137, 511 (2015).
5.J. P. Wang, S. L. Wang, Z. C. Huang and Y. M. Yu, J. Mater. Chem. A, 2, 19595 (2014).
6.P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden and R. Carter, Energy Environ. Sci., 3, 1238 (2010).
7.C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou, Adv. Funct. Mater., 22, 4592 (2012).
8.Z. Yu, C. Li, D. Abbitt and J. Thomas, J. Mater. Chem. A, 2, 10923 (2014).
9.Z. Lu, Z. Chang, W. Zhu and X. Sum, Chem. Commun., 47, 9651 (2011).
10.Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, Adv. Mater., 23, 4828 (2011).
11.E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007).
12.N. Liu, S. Zhang, R. Fu, M. S. Dresselhaus and G. Dresselhaus, Carbon, 44, 2430 (2006).
13.M. Kaempgen, C. K. Chan, J. Ma, Y. Cui and G. Gruner, Nano Lett., 9 (5), 1872 (2009).
14.M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett., 8 (10), 3498 (2008).
15.T. Morimoto, K. Hiratsuka, Y. Sanada, and K. Kurihara, J. Power Sources, 60, 239 (1996).
16.S. Ishimoto, Y. Asakawa, M. Shinya and K. Naoia, J. Electrochem. Soc., 156, A563 (2009).
17.X. Li, C. Han, X. Chen and C. Shi, Microporous Mesoporous Mater., 131, 303 (2010).
18.R. W. Pekala, J. Mater. Sci., 24, 3221 (1989).
19.J. Fricke, X. Lu, R. Caps, C. T. Alviso and R. W. Pekala, J. Non-Cryst. Solids, 8, 226 (1995).
20.Y. J. Lee, J. C. Jung, J. Yi, S. H. Baeck, J. R. Yoon and I. K. Song, Current Applied Physics, 10, 682 (2010).
21.A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).
22.Y. Q. Sun, Q. Wu and G. Q. Shi, Energy Environ. Sci., 4, 1113 (2011).
23.H. Jiang, P. S. Lee and C. Li, Energy Environ. Sci., 6, 41 (2013).
24.P. Simon and Y. Gogotsi, Acc. Chem. Res., (2012).
25.X. Du, P. Guo, H. Song and X. Chen, Electrochimica Acta, 55, 4812 (2010).
26.L. Staudenmaier and Ber. Dtsch. Chem. Ges., 31, 1481 (1898).
27.D. Qu, J. Power Sources, 109, 403 (2002).
28.K. Wang, J. Huang and Z. Wei, J. Phys. Chem. C, 114, 8062 (2010).
29.R.K. Sharma, A.C. Rastogi and S.B. Desu, Electrochem. Commun., 10, 268 (2008).
30.S. Richard Prabhu Gnanakan, M. Rajasekhar and A. Subramania, Int. J. Electrochem. Sci., 4, 1289 (2009).
31.R. Liu, S. I. Cho and S. B. Lee, Nanotechnology, 19, 215710 (2008).
32.M. D. Ingram, H. Staesche and K. S. Ryder, Solid State Ionics, 169, 51 (2004).
33.H. T. Ham, Y. S. Choi, N. Jeong and I. J. Chung, Polymer, 17, 6308 (2005).
34.Q. F. Xiao and X. Zhou, Electrochim. Acta, 48, 575 (2003).
35.V. Khomenko, E. Frackowiak and F. Beguin, Electrochim. Acta, 50, 2499 (2005).
36.H. Wang, Q. Hao, X. Yang, L. Lu and X.Wang, Electrochem. Commun., 11, 1158 (2009).
37.K. Zhang, L. L. Zhang, X. S. Zhao and J. Wu, Chem. Mater., 22, 1392 (2010).
38.J. H. Park, J. M. Ko, O. O. Park and D. W. Kim, J. Power Sources, 105, 20 (2002).
39.S.W. Woo, K. Dokk, and K. Kanamura, J. Power Sources, 185, 1589 (2008).
40.B.C. Kim, J.M. Ko, and G.G. Wallace, J. Power Sources, 177, 665 (2008).
41.A. Sumboja, X. Wang, Jian Yan and P. S. Lee, Electrochimica Acta, 65, 190 (2012).
42.C. Yan, H. Jiang, T. Zhao, C. Li, J. Ma and P. S. Lee, J. Mater. Chem., 21, 10482 (2011).
43.K. Wang, J.Y. Huang, Z.X. Wei, J. Phys. Chem. C, 114, 8062 (2010).
44.J. L. Liu, M. Q. Zhou, L. Z. Fan, P. Li and X. H. Qu, Electrochimica. Acta., 55, 5819 (2010).
45.H. Jiang, L. Yang, C. Li, C. Yan, P. S. Lee and J. Ma, Energy Environ. Sci., 4, 1813 (2011).
46.M. Winokur, P. Walmsley, J. Smith, and A. J. Heeger, Macromolecules, 24, 3812 (1991).
47.Z.A. Hu, Y.L. Xie, Y.X. Wang, L.P. Mo, Y.Y. Yang, and Z.Y. Zhang, Mater. Chem. Phys., 114, 990 (2009).
48.T. P. Gujar, V. R. Shinde, C. D. Lokhande, W. Y. Kim, K. D. Jung, O. S. Joo, Electrochem. Commun., 9, 504 (2007).
49.V. D. Patake and C. D. Lokhande, Applied Surface Science, 254, 2820 (2008).
50.V. D. Patake, C. D. Lokhande and O. S. Joo, Applied Surface Science, 255, 4192 (2009).
51.V. D. Patake, S. M. Pawar, V. R. Shinde, T. P. Gujar, C. D. Lokhande, Current Applied Physics, 10, 99 (2010).
52.P. Yu, X. Zhang, D. L. Wang, L. Wang and Y. W. Ma, Cryst. Growth Des., 9, 528 (2009).
53.G. Ouassim, J. L. Pascal and F. Frederic, ACS Appl. Mater. Interfaces, 1, 1130 (2009).
54.A. Laurence, M. Franc¸ois, D. Romain, C. Olivier, B. Daniel and B. Thierry, J. Phys. Chem. C, 112, 7270 (2008).
55.X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie and Y. Tong, Energy Environ. Sci., 4, 2915 (2011).
56.Y. C. Chen, Y. K. Hsu, Y. G. Lin, Y. K. Lin, Y. Y. Horng, L. C. Chen, K. H. Chen, Electrochimica Acta, 56, 7124 (2011).
57.Y. T. Wu, C. C. Hu, J. Electrochem. Soc., 151, A2060 (2004).
58.B. Vidhyadharan, N. K. M. Zain, I. I. Misnon, R. A. Aziz, J. Ismail, M. M. Yusoff and R. Jose, J. Alloys Compounds, 610, 143 (2014).
59.X. Sun, G. Wang, J. Y. Hwang and J. Lian, J. Mater. Chem., 21, 16581 (2011).
60.S. Xiong, C. Yuan, X. Zhang, B. Xi, and Y. Qian, Chem. Eur. J., 15, 5320 (2009).
61.L. Xie, K. Li, G. Sun, Z. Hu, C. Lv, J. Wang and C. Zhang, J. Solid State Electrochem., 17, 55 (2013).
62.H. Jiang, T. Zhao, C. Z. Li, and J. Ma, J. Mater. Chem., 21, 3818 (2011).
63.G.W. Yang, C.L. Xu, and H.L. Li, Chem. Commun., 6537 (2008).
64.J. W. Lee, T. Ahn, J. H. Kim, J. M. Ko and J. D. Kim, Electrochimica Acta, 56, 4849 (2011).
65.Y. Li, H. Xie and J. Tu, Materials Letters, 63, 1785 (2009).
66.P. Justin and G. Ranga Rao, Int. J. Hydrogen Energy, 35, 9709 (2010).
67.L. Zhang, H. B. Wu and X. W. Lou, Chem. Commun., 48, 6912 (2012).
68.Q. Wang, L. Jiao, H. Du, Y. Si, Y. Wang and H. Yuan, J. Mater. Chem., 22, 21387 (2012).
69.J. Y. Lin and S. W. Chou, RSC Adv., 3, 2043 (2013).
70.M. Jayalakshmi, M. M. Rao and B. M. Choudary, Electrochem. Commun., 6, 1119 (2004).
71.M. Jayalakshmi and M. M. Rao, J. Power Sources, 157, 624 (2006).
72.S. J. Bao, C. M. Li, C. X. Guo and Y. Qiao, J. Power Sources, 180, 676 (2008).
73.J.Q. Yang, X.C. Duan, Q.Qin, and W.J. Zheng, J. Mater. Chem. A, 1, 7880 (2013).
74.S .W. Chou and J. Y. Lin, J. Electrochem. Soc., 160, D178 (2013).
75.S .W. Chou and J. Y. Lin, J. Electrochem. Soc., 162, A2762 (2015).
76.S. Roy, A. Connell, M. Ludwig, N.Wang, T.O. Donnell, M. Brunet, P.M.Closkey, C.O. Mathuna, A. Barman, and R.J. Hicken, J. Magn. Mater., 1524, 290, (2005).
77.M. Chandrasekar, M. Pushpavanam, Electrochim. Acta, 53, 3313 (2008).
78.L. Jiang, R. Zou, W. Li, J. Sun, X. Hu, Y. Xue, G. He and J. Hu, J. Mater. Chem. A, 1, 478 (2013).
79.K. Xu , R. Zou, W. Li, Y. Xue, G. Song, Q. Liu, X. Liu and J. Hu, J. Mater. Chem. A, 1, 9107 (2013).
80.J. Wu, C. Ouyang, S. Dou and S. Wang, Nanotechnology, 26, 325401 (2015).
81.J. H. Kim, K. Zhu, Y. F. Yan, C. L. Perkins and A. J. Frank, Nano Lett., 11, 4099 (2011).
82.L. Demarconnay, E. Raymundo-Pinero and F. Beguin, Electrochem. Commun., 12, 1275 (2010).
83.P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).
84.J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, Adv. Funct. Mater., 22, 2632 (2012).
85.
86.M. Yan, K. Liu, and Z. Jiang, J. Electroanal. Chem., 408, 225 (1996).
87.T. Yoshida, K. Yamaguchi, T. Kazitani, T. Sugiura and H. Minoura, J. Electroanal. Chem., 473, 209 (1999).
88.R. Henr´ıquez, M. Froment, G. Riveros, E. A. Dalchiele, H. G´omez, P. Grez, and D. Lincot, J. Phys. Chem. C, 111, 6017 (2007).
89.T. J. Hrynaszkiewicz, J. Kozłowski, E. Cieszy´nska, and T. Krogulec, J. Electroanal. Chem., 367, 213 (1994).
90.L. Muller, G. N. Mansurov, and O. A. Petrii, J. Electroanal. Chem., 96, 159 (1979).
91.C. Q. Cui and J. Y. Lee, J. Electrochem. Soc., 141, 2030 (1994).
92.RaminMohamed Ali Tehrani and Sulaiman Ab Ghani, J. Colloid Interface Sci., 339, 125 (2009).
93.H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo and Q. Meng, Energy Environ. Sci., 4, 2630 (2011).
94.U. S. Mohanty, B. C. Tripathy, S. C. Das, and V. N. Misra, Metall. Mater. Trans. B, 36, 737 (2005).
95.Q. Han, K. Liu, J. Chen, and X. Wei, Int. J. Hydrogen Energy, 28, 1207 (2003).
96.A. Ghahremaninezhad, E. Asselin, and D. G. Dixon, J. Phys. Chem. C, 115, 9320 (2011).
97.B. Zhang, X. C. Ye, W. Dai, W. Y. Hou and Y. Xie, Chem.–Eur. J., 12, 2337 (2006).
98.Q. Wang, R. Gao and J. H. Li, Appl. Phys. Lett., 90, 143107 (2007).
99.W. Zhou, X. J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang and H. Zhang, Energy Environ. Sci., 6, 2921 (2013).
100.M. Quinet, F. Lallemand, L. Ricq, J. Y. Hihn and P. Delobelle, Surf. Coat. Technol., 204, 3108 (2010).
101.Y. Sun, C. Liu, David C. Grauer, J. Yano, J. R. Long, P. Yang and C. J. Chang, J. Am. Chem. Soc., 135, 17699 (2013).
102.Y. Su, K. Xiao, N. Li, Z. Liu and S. Qiao, J. Mater. Chem. A, 2, 13845 (2014).
103.St. Astegger and E. Bechtold, Surf. Sci., 122, 491 (1982).
104.A. Sumboja, C. Foo, X. Wang and P. Lee, Adv. Mater., 25, 2809 (2013).
105.J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bormben, Handbook of X-ray Photo-electron Spectroscopy, Physical Electronics Inc., Eden Prairie, MN, USA, 1995.
106.J. Shim, M. Klobukowski, M. Barysz and J. Leszczynski, Phys. Chem. Chem. Phys., 13, 5703 (2011).
107.C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao and W. Zheng, Int. J. Hydrogen Energy, 37, 11846 (2012).
108.C. Guimon, A. Zouiten, A Bore’ ave, G. Pfister-Guillouzo, P. Schulz, F. Fitoussi, C. Quet, J. Chem. Soc., Faraday Trans., 90, 3461 (1994).
109.T. Zhu, Z. Wang, S. Ding, J. S. Chen and X. W. Lou, RSC Adv., 1, 397 (2011).
110.Z. Xing, Q. Chu, X. Ren, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi and X. Sun, J. Power Sources, 245, 463 (2014).
111.D. C. Wang, W. B. Ni, H. Pang, Q. Y. Lu, Z. J. Huang, and J. W. Zhao, Electrochim. Acta, 55, 6830 (2010).
112.Q. H. Huang, X. Y. Wang, and J. Li, Electrochim. Acta, 52, 1758 (2007).
113.D. D. Zhao, S. J. Bao, W. J. Zhou, and H. L. Li, Electrochem. Commun., 9, 869 (2007).
114.R. de Levie, Electrochim. Acta, 8, 751 (1963).
115.C. Z. Yuan, H. Dou, B. Gao, L. H. Su, and X. G. Zhang, J. Solid State Electrochem., 12, 1645 (2008).
116.L. Zuo, W. Fan, Y. Zhang, Y. Huang, W. Gaoa and T. Liu, Nanoscale, 9, 4445 (2017).
117.J. Zhao, B. Guan, B. Hu, Z. Xu, D. Wang and H. Zhang, Electro. Acta, 230, 428 (2017).
118.J. Wang, B. Ding, X. Hao, Y. Xu, Y Wang, L. Shen, H. Dou and X. Zhang, Carbon, 102, 255 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊