跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉淑靜
研究生(外文):Shu-Ching Liu
論文名稱:結合虛擬實境之踩車運動復健對中風病人下肢肌肉活動之影響
論文名稱(外文):The Effects of Pedaling Exercise Combine Virtual Reality on the Muscle Activity of Lower Extremities in Stroke
指導教授:葉純妤葉純妤引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學檢驗暨生物技術學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:57
相關次數:
  • 被引用被引用:1
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:中風為腦血管疾病造成,在急性期會有半側偏癱的現象,部分患者會遺留慢性肢體偏癱問題,進而造成功能上的限制。踩車運動是一種具功能性、協調性、及安全性之復健項目,而利用虛擬實境可以提供病患接近真實卻相對安全的模擬環境。但目前對於虛擬實境結合踩車運動之訓練方式,研究方向多以功能性步態及雙側表現之對稱性當作評量指標,而對於神經肌肉控制部分上無直接證據研究。因此本研究希望能藉著虛擬實境與踩車系統結合,增加中風患者復健之意願,並提昇踩車復健運動之成效。將使用虛擬實境搭配臨床踩車系統進行復健訓練,配合下肢肌電圖肌電訊號收取,目的為比較有無加入虛擬實境視覺刺激的踩車運動訓練對中風患者兩側下肢肌肉使用情形,以確定中風患者患側邊用力之正確性、及對兩側對稱性之影響。方法:實驗以虛擬實境視覺輔助結合踩車系統,藉著踩車踏板力量及股直肌EMG肌電訊號收集,來分析下肢用力變化情形,本研究納入15位實驗組及10位控制組之中風患者,皆接受6次傳統治療,其中實驗組有加入虛擬實境視覺刺激的踩車運動,每次踩車時間為二十分鐘。一天一次,3次/週,維持兩週。在訓練前及後分別收取兩側由踏板距離地面最高處至踏板距離身體最遠處之區間位置,並量測此區間位置內其下肢踩車踏板力量比值(患側/健側)及肌電表現(mV)。統計分析:使用one-way ANOVA with one repeated measure分析實驗組與控制組之間是否有交互效應,若無交互效應,則以pair t test進行實驗組與控制組組內前、後比較;以one-way ANOVA with one repeated measure分析兩組組間前後改變量。參數包含下肢踩車踏板力量對稱比比值(symmetry ratio)、及用力區間股直肌之全波積分肌電訊號值(Integral electromyography;IEMG)。結果:研究結果顯示中風患者在經由虛擬實境踩車運動訓練兩周後,其兩側踩車踏板力量比值有顯著改善且優於控制組。而股直肌之IEMG顯示患側於訓練後肌肉活動有顯著提升,健側股直肌之肌肉活動亦有減緩趨勢;但其訓練前後的改變量兩組比較並未達顯著差異。結論:本研究顯示經過6次虛擬實境合併踩車運動訓練,可顯著改善踩車運動過程中雙側踏板力量之對稱性且與明顯優於控制組;並可增進其患側股直肌於踩車過程中應用力區間時之肌肉活動情形。臨床意義:供物理治療師於治療中風患者下肢復健之治療策略建議及虛擬實境合併踩車運動之可行性,並期盼本研究之成果能實際應用於中風患者之臨床復健,以探究中風患者功能表現上的改變其可能作用機轉。

Background: Stroke is caused by cerebrovascular diseases, and hemiplegia is the most common in the acute stage and chronic legacy disabling sequela after stroke. Pedaling exercise is an ideal functional, security, and coordination rehabilitation exercise. Virtual reality is a computer-based technology that allows users to receive “real-time” feedback and interact with a safety situation. But the research combine cycling exercise training with virtual reality commonly direct to functional gait performance and bilateral symmetry movements as outcome measures, while no direct evidence of research discuss about the neuromuscular control section. Therefore, this study hopes through combination of virtual reality and cycling system, to improve the stroke patients’ motivation and to enhance the effects of the therapeutic cycling exercise. During the virtual reality cycling training, the EMG data and the pedal force of the lower extremities of subjects wound be detected. The purpose was compare whether the added virtual reality pedaling exercise, the effects of the symmetry of bilateral pedal force and the appropriation of bilateral rectus femoris muscle activities.
Methods: Both the experimental group (N=15) and control group (N=10) received 6 times of the traditional treatment. The experimental group was instructed to perform an additional Leg-Cycling with Virtual Reality Training System training for 20min/tume, 3 times/week, for 2 weeks. To collect the symmetry ratio of bilateral pedal force and EMG performance of bilateral rectus femoris muscle during pre- and post- test. And the target region was setting from the top of the pedal place to the most distant from body. Statistical analysis: the interaction effects between the two groups were compared by one way ANOVA with one repeated measure. The results of symmetry ratio of pedal force and the integral electromyography (IEMG) of rectus femoris in the target region between pre and post-training in two groups were compared by pair-t test. The change of pre and post-training between two groups were compared by one way ANOVA with one repeated measure. Result: The symmetry ratio of bilateral pedal force showed significant improvement after the Leg-Cycling with Virtual Reality Training System training, and experimental group was better than the control group(p<.05). The effected side IEMG of rectus femoris showed significant improvement after training (p<.05). The sound side IEMG of rectus femoris showed downward trend, but no significant difference between groups (p>.05). Conclusion: The Leg-Cycling with Virtual Reality Training System training improves the symmetry ratio of bilateral pedal force and the effected side IEMG of rectus femoris in the target region. Suggestion: The Leg-Cycling with Virtual Reality Training System training provide the treatment strategy and feasibility in clinics. And look forward the results of this study can be actually used in clinical stroke rehabilitation; further explored the mechanism of functional performance changing in stroke patients.


1. 緒論 1
1.1. 研究背景 1
1.1.1. 中風患者於日常活動中所造成之影響 1
1.1.2. 兩側肢體對稱性及協調性之定義 2
1.1.3. 中風患者目前臨床常用踩車訓練介紹 3
1.1.4. 虛擬實境應用之領域及與復健結合之可行性 5
1.2. 研究動機 7
1.3. 研究目的 8
1.3.1. 重要性 8
1.3.2. 研究問題及假設 9
2. 文獻回顧 10
2.1. 中風患者姿勢控制之問題 10
2.2. 中風患者姿勢控制之再訓練 12
2.3. 踩車運動訓練及限制 14
2.4. 虛擬實境與中風復健 15
3. 研究方法 17
3.1. 儀器系統建立 17
3.1.1. 硬體建立 17
3.1.1.1. 踩車系統 17
3.1.1.2. 肌電訊號擷取系統 20
3.1.2. 軟體建立 21
3.1.2.1. 虛擬實境 21
3.1.2.2. 肌電訊號擷取 22
3.2. 臨床試驗 23
3.3. 研究流程 25
3.3.1. 研究設計 25
3.3.2. 研究對象 26
3.3.3. 實驗流程 27
3.4. 評估測試項目 28
3.4.1. 雙側股直肌其全波積分肌電訊號表現(單位:mV) 28
3.4.2. 下肢踩車踏板偵測之力量(單位:kg) 其對稱比 29
3.5. 資料統計、分析 30
4. 研究結果 31
4.1. 受試者基本特徵 33
4.2. 雙側踏板力量之對稱比指數 (symmetry ratio) 35
4.3. 雙側股直肌積分肌電值表現 37
5. 討論 41
5.1. 受試者基本特徵探討 42
5.2. 踩車及虛擬實境裝置之探討 43
5.3. 雙側踏板力量之探討 45
5.4. 雙側積分肌電值表現之探討 48
5.5 研究限制及未來臨床應用性 52
6. 結論 53
7. 參考文獻 54


1.Bohannon, R. W. (1987). "Gait performance of hemiparetic stroke patients: selected variables." Arch Phys Med Rehabil 68(11): 777-781.
2.Brooks, B., McNeil, J. E. et al. (1999). "Route learning in a case of amnesia: a preliminary investigation into the efficacy of training in a virtual environment." Neuropsychological Rehabilitation. 9: 63-76.
3.Brown, D. A. and Kautz, S. A. (1998). "Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia." Stroke 29(3): 598-606.
4.Brown, D. A. and Kautz, S. A. (1999). "Speed-dependent reductions of force output in people with poststroke hemiparesis." Phys Ther 79(10): 919-930.
5.Burdea, G. C. (2003). "Virtual rehabilitation--benefits and challenges." Methods Inf Med 42(5): 519-523.
6.Chen, H. Y., Chen, S. C. et al. (2005). "Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns." J Electromyogr Kinesiol 15(6): 587-595.
7.Chen, H. Y., Yu, N. Y. et al. (2001). "Development of FES-cycling System with Network Capability for Multi-Center Clinical Studies." Journal of Medical and Biological Engineering 21(2): 85-92.
8.Cheng, J., Brooke, J. D. et al. (1998). "Crossed inhibition of the soleus H reflex during passive pedalling movement." Brain Res 779(1-2): 280-284.
9.Comolli, L., Ferrante, S. et al. (2010). "Metrological characterization of a cycle-ergometer to optimize the cycling induced by functional electrical stimulation on patients with stroke." Med Eng Phys 32(4): 339-348.
10.Crosbe, J., Lennon, S. et al. (2007). "Virtual reality in stroke rehabilitation: still more virtual than real." Disabil Rehabil(29): 1139-1146.
11.Dobkin, G. (2004). "Strategies for stroke rehabilitation." Lancet Neurology 3: 528-536.
12.Dorel, S., Couturier, A. et al. (2008). "Intra-session repeatability of lower limb muscles activation pattern during pedaling." J Electromyogr Kinesiol 18(5): 857-865.
13.Duc, S., Bertucci, W. et al. (2008). "Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways." J Electromyogr Kinesiol 18(1): 116-127.


14.Ekaterina, B. T. and Ina, M. T. (1995). "Asymmetry in walking performance and postural sway in patients with chronic unilateral cerebral infarction. ." Journal of Rehabilitation Research and Development 32(3): 236-244.
15.Ferrante, S., Ambrosini, E. et al. (2011). "A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients." J Neuroeng Rehabil 8: 47.
16.Francois, H. and Sylvain, D. (2009). "Electromyographic analysis of pedaling: A review." Journal of Electromyography and Kinesiology 19: 182-198.
17.Fujiwara, Liu, T., M. et al. (2003). "Effect of pedaling exercise on the hemiplegic lower limb." Am J Phys Med Rehabil 82(5): 357-363.
18.Gallichio, J. and Kluding, P. (2004). "Virtual reality in stroke rehabilitation: review of the emerging research. ." Physical therapy review 9(4): 207-212.
19.Geurts, A. C., de Haart, M. et al. (2005). "A review of standing balance recovery from stroke." Gait Posture 22(3): 267-281.
20.Gustavo, S. and Mindy, L. (2011). "Virtual Reality in Stroke Rehabilitation: A Meta-Analysis and Implications for Clinicians." Stroke 42: 1380-1386.
21.Heidi, S. (2004). "Motor rehabilitation using virtual reality : Review." J. of NeuroEngineering and Reh 1: 10.
22.Hermens, H. J., Freriks, B. et al. (2000). "Development of recommendations for SEMG sensors and sensor placement procedures." J Electromyogr Kinesiol 10: 361-374.
23.Hesse, S., Bertelt, C. et al. (1994). "Restoration of gait in nonambulatory hemiparetic patients by treadmill training with partial body-weight support." Arch Phys Med Rehabil 75(10): 1087-1093.
24.Jaffe, D. L., Brown, D. A. et al. (2004). "Stepping over obstacles to improve walking in individuals with poststroke hemiplegia." J Rehabil Res Dev 41(3A): 283-292.
25.Jang, S. H., You, S. H. et al. (2005). "Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study." Arch Phys Med Rehabil 86(11): 2218-2223.
26.Janssen, T. W., Beltman, J. M. et al. (2008). "Effects of electric stimulation-assisted cycling training in people with chronic stroke." Arch Phys Med Rehabil 89(3): 463-469.
27.Katz-Leurer, Sender, M., I. et al. (2006). "The influence of early cycling training on balance in stroke patients at the subacute stage. Results of a preliminary trial." Clin Rehabil 20(5): 398-405.
28.Kim, J. H., Jang, S. H. et al. (2009). " Use of virtual reality to enhance balance and ambulation in chronic stroke: A double-blind, randomized controlled study." Am J Phys Med Rehabil 88: 693-701.
29.Kirker, S. G., Jenner, J. R. et al. (2000). "Changing patterns of postural hip muscle activity during recovery from stroke." Clin Rehabil 14(6): 618-626.
30.Kollen, B., van de Port, I. et al. (2005). "Predicting improvement in gait after stroke: a longitudinal prospective study." Stroke 36(12): 2676-2680.
31.Krakauer, J. W. (2006). "Motor learning: its relevance to stroke recovery and neurorehabilitation." Curr Opin Neurol 19(1): 84-90.
32.Lamontagne, A., Fung, J. et al. (2007). "Modulation of walking speed by changing optic flow in persons with stroke." J Neuroeng Rehabil 4: 22.
33.Laver, K., George, S. et al. (2012). "Cochrane review: virtual reality for stroke rehabilitation." Eur J Phys Rehbil Med 48(3): 523-530.
34.Lin, P. Y., Chen, J. J. et al. (2013). "The cortical control of cycling exercise in stroke patients: an fNIRS study." Hum Brain Mapp 34(10): 2381-2390.
35.Lynsey, G., Nicholas, T. et al. (2007). "Virtual reality in mental health-A review of the literature." Soc Psychiatry Psychiatr Epidemiol 42: 343-354.
36.Maureen, K. H. (2005). "Virtual Environments for Motor Rehabilitation: Review. ." Cyerpsychology & Behavior. 8(3): 187-219.
37.Mirelman, A., Bonato, P. et al. (2009). "Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke." Stroke 40(1): 169-174.
38.Nick, S. and Leonardo, G. (2004). "Mechanisms Underlying Recovery of Motor Function after Stroke." Arch Neurol 61: 1844-1848.
39.Nicola, J., Hancock., et al. (2012). "Effects of lower limb reciprocal pedalling exercise on motor function after stroke: a systematic review of randomized and nonrandomized studies." World Stroke Organization 7: 47-60.
40.Patterson, K. K., Gage, W. H. et al. (2010). "Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization." Gait Posture 31(2): 241-246.


41.Perell, K. L. et al. (1998). "Lower limb cycling mechanics in subjects with unilateral cerebrovascular accidents." Journal of applied biomechanics 14: 158-179.
42.Piron, I., Turolla, A. et al. (2009). "Exercise for paretic upper limb after stroke: a combined virtual reality and telemedicine approach." J Rehabil Med 41: 1016-1020.
43.Piron, L., Turolla, A. et al. (2010). "Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients." Neurorehabil Neural Repair 24(6): 501-508.
44.Pollock, A., Baer, G. et al. (2003). "Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke." Cochrane Database Syst Rev(2): CD001920.
45.Sackley, C. M. and Baguly, B. I. (1993). "Visual feedback after stroke with balance performance monitor: two single case studies." Clin rehabil 7: 189-195.
46.Sarre, G. and Lepers, R. (2006). "Cycling exercise and the determination of electromechanical delay." J Electromyogr Kinesiol. 17: 617-621.
47.Sucar, I., Leder, R. et al. (2009). "Clinical evaluation of a low cost alternative for stroke rehabilitation." rehabilitation robotics: 863-866.
48.Webster, J. S., McFarland, P. T. et al. (2001). "Computer-assisted training for improving wheelchair mobility in unilateral neglect patients." Arch Phys Med Rehabil 82(6): 769-775.
49.Yang, Y. R., Tsai, M. P. et al. (2008). "Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial." Gait Posture 28(2): 201-206.
50.You, S. H., Jang, S. H. et al. (2005). "Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study." Stroke 36(6): 1166-1171.
51.藍依亭 (2012). "虛擬實境踩車訓練系統於中風患者之臨床療效." 中山醫學大學醫學檢驗暨生物技術學系碩士論文.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top