跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 23:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林意親
研究生(外文):Yi-Chin Lin
論文名稱:生物炭對台灣草莓(Fragaria xananassa Duch.)生長與果實生產之影響
論文名稱(外文):Effects of biochar on growth and fruit production of strawberries (Fragaria xananassa Duch.) in subtropical Taiwan
指導教授:李國譚李金龍李金龍引用關係
指導教授(外文):Kuo-Tan LiChing-Lung Lee
口試委員:張哲嘉林弘萍
口試委員(外文):Jer-Chia ChangHong-Ping Lin
口試日期:2019-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:116
中文關鍵詞:草莓生物炭糖蜜日光消毒產量總葉面積
DOI:10.6342/NTU201903471
相關次數:
  • 被引用被引用:2
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
生物炭為有機質經由熱裂解後之多孔性產物,作為土壤或介質添加物有促進作物生長之效果。然而生物炭對於台灣草莓生產之影響尚未評估。本論文分為兩部分進行探討,第一試驗利用2.5%或5.0%(v./v.) 之菱殼炭以及雜木炭作為無土栽培介質添加物,調查生物炭對 ‘桃園一號’ 草莓在溫室行無土栽培之影響。試驗結果顯示,以生物炭作為介質添加物,顯著提升介質之pH值以及EC值,於定植初期可促進植株鮮乾重以及葉面積等營養生長之效果,然而於生殖生長方面則減少總產量、單果重以及大果率,但對果實可溶性固形物無顯著差異。結果顯示,於養液定期澆灌之情況下,菱殼炭以及雜木炭可促進溫室栽培之 ‘桃園一號’草莓定植前期之營養生長,但對於果實生產並無顯著促進效果。第二試驗以菱殼炭結合定植前之田間土壤日光消毒,並以糖蜜作為碳源,探討其對 ‘香水’以及 ‘天來一號’草莓生長以及果實生產之影響。試驗結果顯示以菱殼炭混合糖蜜,相較於單純使用菱殼炭或是糖蜜結合日光消毒,顯著提昇植株總葉面積、SPAD值、早期產量、單果重以及大果率,但不影響果實可溶性固形物,顯示菱殼炭混合糖蜜作定植前土壤日光消毒處理,具備提昇有機草莓栽培產量之潛力。總體而言,生物炭結合其他物質,如液態肥料以及易分解碳源,於草莓有促進生長之潛力,但需針對不同的栽培模式在肥培管理上進行調整。
Biochar is porous co-product from pyrolysis of organic matters. It has been used in soil amendment to improve soil properties and microbial composition, thus increasing crop vigor and productivity. However, the effect of biochar on strawberry growth and production in Taiwan had not been evaluated. This research included two experiments of biochar effects in strawberries. In the first experiment, the effects of biochar amendment on growth, development, and fruit production in greenhouse grown strawberry production was evaluated. Runner plants of ‘Taoyuan No.1’ strawberry were planted in soilless medium without extra amendment or amended with 2.5% or 5.0% (v./v.) biochar made of water caltrop (Trapa natans L.) husk or wood. Biochar improved total leaf area, fresh and dry weight of plants but reduced fruit weight, total yield and the percentage of large fruit. Total soluble solids content of the fruit was not affected. The result indictated that when the substrate was regularly fertigated, biochar amendments improved early vegetative growth in greenhouse strawberry cultivation but had no benefits on fruit production. In the second experiment, effects of incorporating water caltrop husk biochar and molasses in pre-planting soil solarization on growth and fruit production of ‘Aroma’ and ‘Tien-Lai No.1’ strawberry were investigated. Compared to separated treatment of biochar or molasses, the combination of both materials resulted in higher total leaf area, SPAD value, early fruit production, fruit weight, and the percentage of large fruits. Total soluble solids content of the fruit was not affected. Results showed that the combination biochar with molasses in pre-planting soil solarization is a promising approach for organic strawberry production. Overall, biochar amendment combining other materials, such as liquid fertilizers or easily degradable carbon sources, has potentials in improving strawberry growth in Taiwan. However, fertilizer management has to be evaluated based on the cultivation system.
目錄
口試委員會審定書 i
致謝 ii
目錄 iii
表目錄 vii
圖目錄 viii
摘要 ix
Abstract x
第一章 總論-前人研究及試驗假說 1
1.1 前言 1
1.2 生物炭 3
1.2.1 生物炭之定義 3
1.2.2 生物炭對介質以及土壤性質之影響 3
1.2.3 生物炭對作物生長勢之影響 5
1.2.4 生物炭對介質耕草莓生長之影響 6
1.2.5 生物炭對多年生栽培系統草莓生產之影響 6
1.2.6 生物炭對草莓抗病之影響 7
1.2.7 生物炭種類 7
1.3 非化學性土壤消毒法 10
1.3.1 日光消毒法對土壤性質之影響 11
1.3.2 日光消毒法之碳源選擇 12
1.4 試驗目的與假說 14
1.5 參考文獻 15
第二章 生物炭對溫室草莓栽培及果實生產之影響 22
摘要 22
2.1 前言 23
2.2 材料與方法 24
2.2.1 試驗地點與植物材料 24
2.2.2 介質處理 24
2.2.3 介質pH值以及EC值 24
2.2.4 葉面積 24
2.2.5 走莖及側芽生成 25
2.2.6 植株乾鮮重 25
2.2.7 植株開花數 25
2.2.8 產量與果實品質 25
2.2.9 SPAD值 26
2.2.10 總葉綠素含量與SPAD值迴歸 26
2.2.11 致死數 26
2.2.12 環境資料收集 27
2.2.13 統計分析 27
2.3 結果 28
2.3.1 介質pH值以及EC值 28
2.3.2 葉面積 29
2.3.3 植株鮮乾重 29
2.3.4 植株開花數 30
2.3.5 產量與果實品質 30
2.3.6 SPAD值 30
2.3.7 葉綠素含量 30
2.3.8 致死數 31
2.3.9 走莖及側芽生成 31
2.4 討論 53
2.5 結論 57
2.6 參考文獻 58
第三章 菱殼炭及糖蜜於定植前土壤日光消毒對草莓生長及果實生產之影響 63
摘要 63
3.1 前言 64
3.2 材料與方法 66
3.2.1 試驗地點與土壤處理 66
3.2.2 植物材料與田間管理 66
3.2.3 葉面積 66
3.2.4 致死率 67
3.2.5 SPAD值 67
3.2.6 產量與果實品質 67
3.2.7 土壤pH值以及導電度 68
3.2.8 環境資料收集 68
3.2.9 統計分析 68
3.3 結果 69
3.3.1 葉面積 69
3.3.2 致死率 70
3.3.3 SPAD值 70
3.3.4 產量與果實品質 70
3.3.5 土壤pH值以及EC值 72
3.4 討論 89
3.5 結論 93
3.6 參考文獻 94
第四章 結語與未來展望 97
附錄 98


表目錄
表1. 生物炭對‘桃園一號’草莓植株鮮重及乾重之影響 37
表2. 生物炭對‘桃園一號’草莓根鮮重及乾重之影響 38
表3. 生物炭對‘桃園一號’草莓冠莖鮮重及乾重之影響 39
表4. 生物炭對‘桃園一號’草莓葉片鮮重及乾重之影響 40
表5. 生物炭對‘桃園一號’草莓各級果實數量佔比及可溶性固形物含量之影響 47
表6. 生物炭對‘桃園一號’草莓草葉片SPAD值之影響 48
表7. 生物炭對 ‘桃園一號’草莓之植株致死數之影響 52
表8. 菱殼炭及糖蜜對 ‘香水’草莓葉面積之影響 73
表9. 菱殼炭及糖蜜對 ‘天來一號’草莓葉面積之影響 74
表10. 菱殼炭及糖蜜對’香水’草莓之影響 82
表11菱殼炭及糖蜜對 ‘香水’草莓第一期果各級果實數佔比及果重之影響 83
表12 菱殼炭及糖蜜對‘天來一號’草莓致死率、SPAD值及植株總產量之影響 86
表13. 菱殼炭及糖蜜對 ‘天來一號’草莓第一期果各級果實數佔比及果重之影響 87
表14. 菱殼炭及糖蜜對試區土壤pH值以及酸鹼之影響 88




圖目錄
圖1. 生物炭對介質pH值之影響 32
圖2. 生物炭對介質EC值之影響 33
圖3. 生物炭對‘桃園一號’草莓植株總葉面積之影響 34
圖4. 生物炭對‘桃園一號’草莓根、冠莖及葉片鮮重之影響 35
圖5. 生物炭對 ‘桃園一號’草莓植株外觀之影響 36
圖6. 生物炭對‘桃園一號’草莓各週開花數之影響 41
圖7. 生物炭對‘桃園一號’草莓各週累積開花數之影響 42
圖8. 生物炭對‘桃園一號’草莓植株總開花數之影響 43
圖9. 生物炭對‘桃園一號’草莓植株總產量之影響 44
圖10. 生物炭對 ‘桃園一號’草莓單果重之影響 45
圖11. 不同生物炭對 ‘桃園一號’草莓果實數之影響 46
圖12. 生物炭對‘桃園一號’草莓葉片總葉綠素含量之影響 49
圖13. 生物炭對‘桃園一號’草莓走莖數量之影響 50
圖14. 生物炭對 ‘桃園一號’草莓側芽數量之影響 51
圖15. 菱殼炭與糖蜜對‘香水’草莓葉面積之影響 75
圖16. 菱殼炭與糖蜜對‘天來一號’草莓葉面積之影響 76
圖17. 菱殼炭與糖蜜對‘香水’草莓致死率之影響 77
圖18. 菱殼炭與糖蜜對‘香水’草莓第一片葉之SPAD值之影響 78
圖19. 菱殼炭與糖蜜對‘天來一號’草莓第一片葉之SPAD值之影響 79
圖20. 菱殼炭與糖蜜對‘香水’草莓單株累積產量之影響 80
圖21. 菱殼炭與糖蜜對‘香水’草莓產量之影響 81
圖22. 菱殼炭與糖蜜對‘天來一號’草莓單株累積產量之影響 84
圖23. 菱殼炭與糖蜜對‘天來一號’草莓產量之影響 85
布蘭蒂. 2013. 草莓 (Fragaria× ananassa Duch.) 栽培之椰纖介質組合與養液研究. 國立屏東科技大學熱帶農業暨國際合作系學位論文. 屏東.
交通部中央氣象局. 2010. 臺灣氣候特徵簡介-台灣的溫度. <https://www.cwb.gov.tw/V7/climate/climate_info/taiwan_climate/taiwan_1/taiwan_1_2.html>
行政院農委會. 2017. 農產品生產面積統計. 農業統計資料查詢.
< http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>.
行政院農委會. 2017. 農產品生產面積統計. 農業統計資料查詢.
< http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>.
行政院環境保護署. 2013. 資源循環. 農業廢棄物回收再利用. <https://lcss.epa.gov.tw/LcssViewPage/Responsive/PrjDetail.aspx?WikiPrjMain_Id=7213BC017B15BDEB>.
行政院環境保護署. 2015. 資源循環. 農業廢棄物回收再利用. <https://lcss.epa.gov.tw/LcssViewPage/Responsive/AreaDoc.aspx?CityID=10021&DistrictId=1001110&ActDocId=a2f61bf9-23d5-4e0c-8db2-c84c9b45c4a1>.
行政院環境保護署. 2015. 資源循環. 農業廢棄物回收再利用.
<https://lcss.epa.gov.tw/LcssViewPage/Responsive/AreaDoc.aspx?CityID=10021&DistrictId=1001110&ActDocId=a2f61bf9-23d5-4e0c-8db2-c84c9b45c4a1>.
朱亭錚. 2007. 臺灣草苺栽培之過去與前瞻. 臺灣大學園藝學研究所學位論文. 臺北.
呂嘉彬. 2009. 摘除老葉, 走莖與花對臺灣冬季草莓生長發育與生產之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
李國譚. 2011. 草莓園夏季休耕與輪作植株管理. 臺大農業推廣通訊 88:3-7.
李窓明、李聯興、倪萬丁. 1993. 草莓新品種「桃園二號」育種研究. 桃園區農業改良場研究報告第13 號 :17.
李窓明. 1994. 草莓栽培曆, 草莓病蟲害防治曆. 桃園區農業專訊 :14-15.
杜國棟、呂德國. 2003. 人工混配基質對草莓生長發育的影響. 北方園藝 5:43-44.
林弘萍. 2018. 菱角殼循環經濟 - 綠色/永續化學網路資源共享. < http://gc.chem.sinica.edu.tw/workshop/notes.php?DownFile=20171202/20171202-3.pdf>
林毓雯、張庚鵬、黃維廷. 2005. 有機質肥料之合理化施用. 合理化施肥專刊. p. 267-278.
張廣淼、蔡正賢、吳添益. 2007. 肥料用量對高架草莓生育及產量之影響. 苗栗區農業改良場研究彙報 1:01-14.
許永華. 1984. 草莓青枯病-台灣新紀錄的草莓病害. 桃園區農業改良場研究彙報:59-63.
許隆俊. 2012. 兔眼藍莓扦插繁殖與酸性肥料施用之探討. 台灣大學園藝學研究所學位論文. 臺北.
黃秀華. 1993. 太陽能在土壤傳播性病害之應用. 臺中區農業改良場特刊 :247-256.
劉民卿. 1998. 菱角栽培. 臺南區農業改良場技術專刊 :1-7.
劉嘉哲. 2007. 臺糖產出生質酒精的發展. 綠色油田在農業永續發展扮演的角色. p. 77-86.
蔡佳儒、吳耿東. 2013. 木質材料製備之生物炭應用對植物生長機制之探討. 林產工業 32:169-178.
羅國偉. 2009. 溫室草莓栽培技術. 桃園區農業專訊 :7-9.
羅國偉. 2016. 草莓畸形果發生原因及預防措施. 桃園區農業專訊 :7-8.
鐘珮哲、吳添益. 2017. 草莓田休閒期土壤管理對萎凋病之抑制效果. 苗栗區農業改良場研究彙報 :15-25.
鐘珮哲、黃勝泉、蔡正賢、吳添益、張訓堯、張素貞、吳登楨. 2014. 草莓健康管理生產體系之研究. 102 年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集. p. 46-57.
鐘珮哲、黃勝泉、蔡正賢、吳添益、張訓堯、張素貞、吳登楨. 2014. 草莓健康管理生產體系之研究. 102 年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集. p. 46-57.
Abbott, A. 1968. Growth of the strawberry plant in relation to nitrogen and phosphorus nutrition. J. Hortic. Sci. 43:491-504.
Abu-Zahra, T. and A. Tahboub. 2008. Effect of organic matter sources on chemical properties of the soil and yield of strawberry under organic farming conditions. World Appl. Sci. J. 5:383-388.
Akhtar, S.S., G. Li, M.N. Andersen, and F. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Mgt. 138:37-44.
Anderson, C.R., L.M. Condron, T.J. Clough, M. Fiers, A. Stewart, R.A. Hill, and R.R. Sherlock. 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309-320.
Baldi, E., R. Nestby, C. Raynal-Lacroix, P. Lieten, T. Salo, D. Pivot, P. Lucchi, G. Baruzzi, W. Faedi, and M. Tagliavini. 2003. Uptake and partitioning of major nutrients by strawberry plants. Proc. Euro Berry Symp. COST Action 836 Final Wkshp 649. p. 197-200.
Barroso, M.M. and C. Alvarez. 1997. Toxicity symptoms and tolerance of strawberry to salinity in the irrigation water. Scientia Hort. 71:177-188.
Bruun, E.W., H. Hauggaard-Nielsen, N. Ibrahim, H. Egsgaard, P. Ambus, P.A. Jensen, and K. Dam-Johansen. 2011. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35:1182-1189.
Butler, D.M., E.N. Rosskopf, N. Kokalis-Burelle, J.P. Albano, J. Muramoto, C.J.P. Shennan, and Soil. 2012. Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant Soil 355:149-165.
Butler, D.M., N. Kokalis-Burelle, J.P. Albano, T.G. McCollum, J. Muramoto, C. Shennan, and E.N. Rosskopf. 2014. Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant Soil 378:365-381.
Carew, J.G., M. Morretini, and N.H. Battey. 2003. Misshapen fruits in strawberry. Small Fruits Rev. 2:37-50.
Chan, K.Y. and Xu Z. 2009. Biochar: Nutrient properties and their enhancement p. 67–84. In: Lehmann J. and S. Joseph (eds.). Biochar for environmental management: Science and technology. Earthscan London UK
Chan, K.Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 45:629-634.
Clough, T., L. Condron, C. Kammann, and C. Müller. 2013. A review of biochar and soil nitrogen dynamics. Agronomy 3:275-293.
Conn, K. and G. Lazarovits. 1999. Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations. Can. J. Plant Pathol. 21:81-92.
De Tender, C.A., Haegeman, B. Vandecasteele, L. Clement, P. Cremelie, P. Dawyndt, M. Maes, and J. Debode. 2016a. Dynamics in the strawberry rhizosphere microbiome in response to biochar and Botrytis cinerea leaf infection. Frontiers Microbiol. 7:2062.
De Tender, C.A., J. Debode, B. Vandecasteele, T. D’Hose, P. Cremelie, A. Haegeman, T. Ruttink, P. Dawyndt, and M. Maes. 2016b. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl. Soil Ecol. 107:1-12.
Deluca, T., M.D. MacKenzie, and M.J. Gundale. 2009. Biochar effects on soil nutrient transformations, p. 251–270. In: Lehmann, J. and S. Joseph (eds.). Biochar for environmental management: Science and technology. Earthscan, London, UK.
Ding, Y., Y.-X. Liu, W.-X. Wu, D.-Z. Shi, M. Yang, and Z.-K. Zhong. 2010. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, Soil Pollution 213:47-55.
Downie, A., A. Crosky, and P. Munroe. 2009. Physical properties of biochar p. 13–32. In: J. Lehmann and S. Joseph (eds.). Biochar for environmental management: Science and technology. Earthscan Sterling VA.
Ebrahimi, R., M.K. Souri, F. Ebrahimi, and M. Ahmadizadeh. 2012. Growth and yield of strawberries under different potassium concentrations of hydroponic system in three substrates. World Appl. Sci. J. 16:1380-1386.
Enders, A., K. Hanley, T. Whitman, S. Joseph, and J. Lehmann. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technol. 114:644-653.
Evans, M.R., B.E. Jackson, M. Popp, and S. Sadaka. 2017. Chemical properties of biochar materials manufactured from agricultural products common to the Southeast United States. HortTechnology. 27:16-23.
Everts, K., S. Sardanelli, R. Kratochvil, D. Armentrout, and L. Gallagher. 2006. Root-knot and root-lesion nematode suppression by cover crops, poultry litter, and poultry litter compost. Plant Dis. 90:487-492.
Faby, R. 1996. The productivity of graded''Elsanta''frigo plants from different origins. Proc. III Intl. Strawberry Symp. 439. p. 449-456.
Frenkel, O., A.K. Jaiswal, Y. Elad, B. Lew, C. Kammann, and E.R. Graber. 2017. The effect of biochar on plant diseases: what should we learn while designing biochar substrates? J. Environ. Eng. Landscape Mgt. 25:105-113.
Gamliel, A. and J. Katan. 1991. Involvement of fluorescent pseudomonads and other microorganisms in increased growth response of plants in solarized soils. Phytopathology 81:494-502.
Gamliel, A. and J. Katan. 2012. Soil solarization theory and practice. APS Press. St. Paul, MN, USA.
Gamliel, A., M. Austerweil, and G. Kritzman. 2000. Non-chemical approach to soilborne pest management–organic amendments. Crop Protection 19:847-853.
Glaser, B., L. Haumaier, G. Guggenberger, and W. Zech. 2001. The ''Terra Preta'' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37-41.
Graber, E.R., Y.M. Harel, M. Kolton, E. Cytryn, A. Silber, D.R. David, L. Tsechansky, M. Borenshtein, and Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481-496.
Gravel, V., M. Dorais, and C. Ménard. 2013. Organic potted plants amended with biochar: its effect on growth and Pythium colonization. Can. J. Plant Sci. 93:1217-1227.
Grisso, R.D., M.M. Alley, D.L. Holshouser, and W.E. Thomason. 2005. Precision farming tools: soil electrical conductivity. Virginia Coop. Ext. p. 1-6.
Grünzweig, J.M., J. Katan, Y. Ben-Tal, and H.D. Rabinowitch. 1999. The role of mineral nutrients in the increased growth response of tomato plants in solarized soil. Plant Soil 206:21-27.
Gul, S., J.K. Whalen, B.W. Thomas, V. Sachdeva, and H. Deng. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr. Ecosystems Environ. Behavior 206:46-59.
Güler, S., I. Macit, A. Koc, and H. Ibrikci. 2006. Estimating leaf nitrogen status of strawberry by using chlorophyll meter reading. J. Biological Sci. 6:1011-1016.
Hancock, J. F. 1999a. Structural and developmental physiology, p. 90-110. In: J. F. Hancock (ed.). Strawberries. CAB International, Wallingfer, UK.
Hancock, J. F. 1999b. Cultrual systems, p. 90-110. In: J. F. Hancock (ed.). Strawberries. CAB International, Wallingfer, UK.
Heide, O., J. Stavang, and A. Sønsteby. 2013. Physiology and genetics of flowering in cultivated and wild strawberries–a review. J. Hort. Sci. Biotechnol. 88:1-18.
Herath, H., M. Camps-Arbestain, and M. Hedley. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209:188-197.
Hossain, M.K., V. Strezov, K.Y. Chan, and P.F. Nelson. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167-1171.
Inskeep, W.P. and P.R. Bloom. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol. 77:483-485.
Jay, C.N., J.D. Fitzgerald, N.A. Hipps, and C.J. Atkinson. 2015. Why short‐term biochar application has no yield benefits: evidence from three field‐grown crops. Soil Use Mgt. 31:241-250.
Jeffery, S., F.G. Verheijen, M. van der Velde, and A.C. Bastos. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr. Ecosystems Environ. Behavior 144:175-187.
Katase, M., C. Kubo, S. Ushio, E. Ootsuka, T. Takeuchi, and T. Mizukubo. 2009. Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Nematol. Res. 39:53–62
Keener, H., M. Wicks, F. Michel, and K. Ekinci. 2014. Composting broiler litter. World''s Poultry Sci. J. 70:709-720.
Kloss, S., F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M.H. Gerzabek, and G. Soja. 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environmental Quality 41:990-1000.
Koike, S., M. Bolda, O. Daugovish, S. Dara, K. Klonsky, M. Mazzola, J. Muramoto, C. Shennan, G. Baird, and M. Zavatta. 2014. Optimizing anaerobic soil disinfestation for California strawberries. Proc. VIII Intl Symp. Chem. Non-Chemical Soil Substrate Disinfestation 1044. p. 215-220.
Kookana, R.S., A.K. Sarmah, L. Van Zwieten, E. Krull, and B. Singh. 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv. Agron. 112: 103-143.
Laird, D.A. 2008. The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality. Agron. J. 100:178.
Lamers, J., M. Mazzola, E. Rosskopf, N. Kokalis-Burelle, N. Momma, D. Butler, C. Shennan, J. Muramoto, and Y. Kobara. 2014. Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: current knowledge and future directions. Proc. VIII Intl. Symp. Chem. Non-Chemical Soil Substrate Disinfestation 1044. p. 165-175.
Lehmann, J. and S. Joseph. 2009. Biochar for environmental management: An introduction, p. 1–12. In: J. Lehmann and S. Joseph (eds.). Biochar for environmental management: Science and technology. Earthscan, London, UK.
Lehmann, J., J. Pereira da Silva, Jr., C. Steiner, T. Nehls, W. Zech, and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 249:343–357.
Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota – A review. Soil Biol. Biochem. 43:1812-1836.
Lu, Y., S. Rao, F. Huang, Y. Cai, G. Wang, and K. Cai. 2016. Effects of biochar amendment on tomato bacterial wilt resistance and soil microbial amount and activity. Intl. J. Agron. 2016:1-10.
Macit, I., A. Koc, S. Guler, and I. Deligoz. 2007. Yield, quality and nutritional status of organically and conventionally-grown strawberry cultivars. Asian J. Plant Sci. 6:1131-1136.
Masulili, A., W.H. Utomo, and M. Syechfani. 2010. Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agr. Sci. 2:39.
McCall, W.W. 1980. The pH preference of plants. General Home Garden Series 18, University of Hawaii, Honolulu, USA.
Meller Harel, Y., Y. Elad, D. Rav-David, M. Borenstein, R. Shulchani, B. Lew, and E.R. Graber. 2012a. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357:245-257.
Meller Harel, Y., M. Kolton, Y. Elad, D. Rav-David, E. Cytryn, M. Borenstein, R. Shulchani, and E.R. Graber. 2012b. Biochar impact on plant development and disease resistance in pot trials. IOBC-WPRS Bul. 78:141-147.
Miyake, Y. and E. Takahashi. 1986. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Sci. Plant Nutr. 32:321-326.
Momma, N. 2008. Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agricultural Res. Qrtly. 42:7-12.
Momma, N., Y. Kobara, S. Uematsu, N. Kita, and A. Shinmura. 2013. Development of biological soil disinfestations in Japan. Appl. Microbiol. Biotechnol. Adv. 97:801-3809.
Mukherjee, A., A. Zimmerman, and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247-255.
Nestby, R., F. Lieten, D. Pivot, C.R. Lacroix, and M. Tagliavini. 2005. Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs: a review. Intl. J. Fruit Sci. 5:139-156.
Netto, A.T., E. Campostrini, J.G. de Oliveira, and R.E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Hort. 104:199-209.
Neuweiler, R. Year. Nitrogen fertilization in integrated outdoor strawberry production. Proc. III Intl. Strawberry Symp. 439. p. 747-752.
Oka, Y., N. Shapira, and P. Fine. 2007. Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Protection 26:1556-1565.
Peng, X., L. Ye, C. Wang, H. Zhou, and B. Sun. 2011. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res. 112:159-166.
Pokhrel, B., K.H. Laursen, and K.K. Petersen. 2015. Yield, quality, and nutrient concentrations of strawberry (Fragaria× ananassa Duch. cv. Sonata) grown with different organic fertilizer strategies. J. Agricultural Food Chem. 63:5578-5586.
Raveendran, K., A. Ganesh, and K.C. Khilar. 1995. Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812-1822.
Santos, B. M. and C. K. Chandler. 2009. Influence of nitrogen fertilization rates on the performance of strawberry cultivars. Intl. J. Fruit Sci. 9:126-135.
Sato, S., S. Sakaguchi, H. Furukawa, and H. Ikeda. 2006. Effects of NaCl application to hydroponic nutrient solution on fruit characteristics of tomato (Lycopersicon esculentum Mill.). Scientia Hort. 109:248-253.
Seman-Varner, R., R. McSorley, and R. Gallaher. 2008. Soil nutrient and plant responses to solarization in an agroecosystem utilizing an organic nutrient source. Renewable Agr. Food Systems 23:149-154.
Shennan, C., J. Muramoto, G. Baird, S. Koike, M. Bolda, and M. Mazzola. 2013. Optimizing anaerobic soil disinfestation for soilborne disease control. Proc. Annu. Intl. Res. Conf. Methyl Bromide Alternatives Emissions Reductions p. 13-1.
Skirvin, R.M., A.G. Otterbacher, and J. Sullivan. 1987. The effect of parent plant size and cultivar on runner production in strawberry. Adv. Strawberry Res. 6:6.
Stapleton, J.J. 2000. Soil solarization in various agricultural production systems. Crop Protection 19:837-841.
Steiner, C., K.C. Das, M. Garcia, B. Förster, and W. Zech. 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51:359-366.
Suarez, D.L. and C.M. Grieve. 2013. Growth, yield, and ion relations of strawberry in response to irrigation with chloride-dominated waters. J. Plant Nutr. 36:1963-1981.
Taiz, L. and E. Zeiger. 2002a. Mineral nutrition, p.67-86. In: Taiz, L., Zeiger, E. (eds.). Plant Physiology, third ed. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA.
Taiz, L. and E. Zeiger. 2002b. Stress physiology, p.591-623. In: Taiz, L., Zeiger, E. (eds.). Plant Physiology, third ed. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA.
Taiz, L. and E. Zeiger. 2002c. Auxin: the growth hormone, p.423-460. In: Taiz, L., Zeiger, E. (eds.). Plant Physiology, third ed. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA.
Van Zwieten, L., S. Kimber, S. Morris, K. Chan, A. Downie, J. Rust, S. Joseph, and A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235-246.
Viger, M., R.D. Hancock, F. Miglietta, and G. Taylor. 2015. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Gcb Bioenergy 7:658-672.
Yao, Y., B. Gao, J. Chen, and L. Yang. 2013. Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environmental Sci. Technol. 47:8700-8708.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top