|
[1]J. C. Hogg and C. M. Doerschuk, "Leukocyte traffic in the lung," Annu Rev Physiol, vol. 57, pp. 97-114, 1995. [2]A. R. Burns, C. W. Smith, and D. C. Walker, "Unique structural features that influence neutrophil emigration into the lung," Physiol Rev, vol. 83, pp. 309-36, Apr 2003. [3]C. Kuhn, 3rd, "Ultrastructure and cellular function in the distal lung," Monogr Pathol, vol. 19, pp. 1-20, 1978. [4]I. Y. Adamson and D. H. Bowden, "The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen," Lab Invest, vol. 30, pp. 35-42, Jan 1974. [5]E. Spinelli Oliveira, J. T. Hancock, M. Hermes-Lima, D. A. Isola, M. Ochs, J. Yu, et al., "Implications of dealing with airborne substances and reactive oxygen species: what mammalian lungs, animals, and plants have to say?," Integr Comp Biol, vol. 47, pp. 578-91, Oct 2007. [6]B. Moldoveanu, P. Otmishi, P. Jani, J. Walker, X. Sarmiento, J. Guardiola, et al. [7]L. Ding, P. S. Linsley, L. Y. Huang, R. N. Germain, and E. M. Shevach, "IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression," J Immunol, vol. 151, pp. 1224-34, Aug 1 1993. [8]T. Nittoh, H. Fujimori, Y. Kozumi, K. Ishihara, S. Mue, and K. Ohuchi, "Effects of glucocorticoids on apoptosis of infiltrated eosinophils and neutrophils in rats," Eur J Pharmacol, vol. 354, pp. 73-81, Jul 31 1998. [9]B. Moldoveanu, P. Otmishi, P. Jani, J. Walker, X. Sarmiento, J. Guardiola, et al., "Inflammatory mechanisms in the lung," J Inflamm Res, vol. 2, pp. 1-11, 2009. [10]V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, "Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF," J Clin Invest, vol. 101, pp. 890-8, Feb 15 1998. [11]E. R. Sutherland and R. J. Martin, "Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma," J Allergy Clin Immunol, vol. 112, pp. 819-27; quiz 828, Nov 2003. [12]A. Di Stefano, A. Capelli, M. Lusuardi, P. Balbo, C. Vecchio, P. Maestrelli, et al., "Severity of airflow limitation is associated with severity of airway inflammation in smokers," Am J Respir Crit Care Med, vol. 158, pp. 1277-85, Oct 1998. [13]T. C. O'Shaughnessy, T. W. Ansari, N. C. Barnes, and P. K. Jeffery, "Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1," Am J Respir Crit Care Med, vol. 155, pp. 852-7, Mar 1997. [14]H. Sarir, P. A. Henricks, A. H. van Houwelingen, F. P. Nijkamp, and G. Folkerts, "Cells, mediators and Toll-like receptors in COPD," Eur J Pharmacol, vol. 585, pp. 346-53, May 13 2008. [15]I. T. Lee and C. M. Yang, "Inflammatory signalings involved in airway and pulmonary diseases," Mediators Inflamm, vol. 2013, p. 791231, 2013. [16]R. M. Strieter and M. P. Keane, "Innate immunity dictates cytokine polarization relevant to the development of pulmonary fibrosis," J Clin Invest, vol. 114, pp. 165-8, Jul 2004. [17]J. F. Pittet, M. J. Griffiths, T. Geiser, N. Kaminski, S. L. Dalton, X. Huang, et al., "TGF-beta is a critical mediator of acute lung injury," J Clin Invest, vol. 107, pp. 1537-44, Jun 2001. [18]S. Ito, K. Ogawa, K. Takeuchi, M. Takagi, M. Yoshida, T. Hirokawa, et al., "A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis," J Biol Chem, Oct 12 2017. [19]S. L. Friedman, D. Sheppard, J. S. Duffield, and S. Violette, "Therapy for fibrotic diseases: nearing the starting line," Sci Transl Med, vol. 5, p. 167sr1, Jan 09 2013. [20]I. Y. Adamson, L. Young, and D. H. Bowden, "Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis," Am J Pathol, vol. 130, pp. 377-83, Feb 1988. [21]A. L. Katzenstein and J. L. Myers, "Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification," Am J Respir Crit Care Med, vol. 157, pp. 1301-15, Apr 1998. [22]C. Kuhn, 3rd, J. Boldt, T. E. King, Jr., E. Crouch, T. Vartio, and J. A. McDonald, "An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis," Am Rev Respir Dis, vol. 140, pp. 1693-703, Dec 1989. [23]C. Kuhn and J. A. McDonald, "The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis," Am J Pathol, vol. 138, pp. 1257-65, May 1991. [24]M. Selman, T. E. King, and A. Pardo, "Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy," Ann Intern Med, vol. 134, pp. 136-51, Jan 16 2001. [25]M. Kasper and G. Haroske, "Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis," Histol Histopathol, vol. 11, pp. 463-83, Apr 1996. [26]F. X. McCormack, T. E. King, Jr., D. R. Voelker, P. C. Robinson, and R. J. Mason, "Idiopathic pulmonary fibrosis. Abnormalities in the bronchoalveolar lavage content of surfactant protein A," Am Rev Respir Dis, vol. 144, pp. 160-6, Jul 1991. [27]F. X. McCormack, T. E. King, Jr., B. L. Bucher, L. Nielsen, and R. J. Mason, "Surfactant protein A predicts survival in idiopathic pulmonary fibrosis," Am J Respir Crit Care Med, vol. 152, pp. 751-9, Aug 1995. [28]A. Burkhardt, "Alveolitis and collapse in the pathogenesis of pulmonary fibrosis," Am Rev Respir Dis, vol. 140, pp. 513-24, Aug 1989. [29]P. Martin, "Wound healing--aiming for perfect skin regeneration," Science, vol. 276, pp. 75-81, Apr 04 1997. [30]H. A. Chapman, C. L. Allen, and O. L. Stone, "Abnormalities in pathways of alveolar fibrin turnover among patients with interstitial lung disease," Am Rev Respir Dis, vol. 133, pp. 437-43, Mar 1986. [31]I. Kotani, A. Sato, H. Hayakawa, T. Urano, Y. Takada, and A. Takada, "Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis," Thromb Res, vol. 77, pp. 493-504, Mar 15 1995. [32]S. Imokawa, A. Sato, H. Hayakawa, M. Kotani, T. Urano, and A. Takada, "Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis," Am J Respir Crit Care Med, vol. 156, pp. 631-6, Aug 1997. [33]H. N. Antoniades, M. A. Bravo, R. E. Avila, T. Galanopoulos, J. Neville-Golden, M. Maxwell, et al., "Platelet-derived growth factor in idiopathic pulmonary fibrosis," J Clin Invest, vol. 86, pp. 1055-64, Oct 1990. [34]T. A. Wynn, "Integrating mechanisms of pulmonary fibrosis," J Exp Med, vol. 208, pp. 1339-50, Jul 4 2011. [35]J. Wilborn, L. J. Crofford, M. D. Burdick, S. L. Kunkel, R. M. Strieter, and M. Peters-Golden, "Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2," J Clin Invest, vol. 95, pp. 1861-8, Apr 1995. [36]B. D. Uhal, I. Joshi, A. L. True, S. Mundle, A. Raza, A. Pardo, et al., "Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro," Am J Physiol, vol. 269, pp. L819-28, Dec 1995. [37]B. D. Uhal, I. Joshi, W. F. Hughes, C. Ramos, A. Pardo, and M. Selman, "Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung," Am J Physiol, vol. 275, pp. L1192-9, Dec 1998. [38]P. D. Yurchenco and J. C. Schittny, "Molecular architecture of basement membranes," FASEB J, vol. 4, pp. 1577-90, Apr 01 1990. [39]G. Raghu, L. J. Striker, L. D. Hudson, and G. E. Striker, "Extracellular matrix in normal and fibrotic human lungs," Am Rev Respir Dis, vol. 131, pp. 281-9, Feb 1985. [40]A. Pardo, M. Selman, K. Ridge, R. Barrios, and J. I. Sznajder, "Increased expression of gelatinases and collagenase in rat lungs exposed to 100% oxygen," Am J Respir Crit Care Med, vol. 154, pp. 1067-75, Oct 1996. [41]A. Pardo, R. Barrios, V. Maldonado, J. Melendez, J. Perez, V. Ruiz, et al., "Gelatinases A and B are up-regulated in rat lungs by subacute hyperoxia: pathogenetic implications," Am J Pathol, vol. 153, pp. 833-44, Sep 1998. [42]Y. Fukuda, M. Ishizaki, S. Kudoh, M. Kitaichi, and N. Yamanaka, "Localization of matrix metalloproteinases-1, -2, and -9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases," Lab Invest, vol. 78, pp. 687-98, Jun 1998. [43]A. R. Bihlet, M. A. Karsdal, J. M. Sand, D. J. Leeming, M. Roberts, W. White, et al., "Biomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD," Respir Res, vol. 18, p. 22, Jan 19 2017. [44]M. Selman, V. Ruiz, S. Cabrera, L. Segura, R. Ramirez, R. Barrios, et al., "TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment?," Am J Physiol Lung Cell Mol Physiol, vol. 279, pp. L562-74, Sep 2000. [45]T. Hayashi, W. G. Stetler-Stevenson, M. V. Fleming, N. Fishback, M. N. Koss, L. A. Liotta, et al., "Immunohistochemical study of metalloproteinases and their tissue inhibitors in the lungs of patients with diffuse alveolar damage and idiopathic pulmonary fibrosis," Am J Pathol, vol. 149, pp. 1241-56, Oct 1996. [46]T. Yaguchi, Y. Fukuda, M. Ishizaki, and N. Yamanaka, "Immunohistochemical and gelatin zymography studies for matrix metalloproteinases in bleomycin-induced pulmonary fibrosis," Pathol Int, vol. 48, pp. 954-63, Dec 1998. [47]T. A. Wynn and T. R. Ramalingam, "Mechanisms of fibrosis: therapeutic translation for fibrotic disease," Nat Med, vol. 18, pp. 1028-40, Jul 06 2012. [48]I. Sakaida, Y. Matsumura, M. Kubota, K. Kayano, K. Takenaka, and K. Okita, "The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet," Hepatology, vol. 23, pp. 755-63, Apr 1996. [49]Y. Liu, Z. Wang, S. Q. Kwong, E. L. H. Lui, S. L. Friedman, F. R. Li, et al., "Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib," J Hepatol, vol. 55, pp. 612-625, Sep 2011. [50]Z. Zhou, R. Song, C. L. Fattman, S. Greenhill, S. Alber, T. D. Oury, et al., "Carbon monoxide suppresses bleomycin-induced lung fibrosis," Am J Pathol, vol. 166, pp. 27-37, Jan 2005. [51]N. F. Voelkel, R. W. Vandivier, and R. M. Tuder, "Vascular endothelial growth factor in the lung," Am J Physiol Lung Cell Mol Physiol, vol. 290, pp. L209-21, Feb 2006. [52]B. Li, A. S. Lalani, T. C. Harding, B. Luan, K. Koprivnikar, G. Huan Tu, et al. [53]W. X. Hong, M. S. Hu, M. Esquivel, G. Y. Liang, R. C. Rennert, A. McArdle, et al., "The Role of Hypoxia-Inducible Factor in Wound Healing," Adv Wound Care (New Rochelle), vol. 3, pp. 390-399, May 1 2014. [54]N. Masson and P. J. Ratcliffe, "HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels," J Cell Sci, vol. 116, pp. 3041-9, Aug 01 2003. [55]Y. J. Jung, J. S. Isaacs, S. Lee, J. Trepel, and L. Neckers, "IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis," FASEB J, vol. 17, pp. 2115-7, Nov 2003. [56]I. B. Coimbra, S. A. Jimenez, D. F. Hawkins, S. Piera-Velazquez, and D. G. Stokes, "Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes," Osteoarthritis Cartilage, vol. 12, pp. 336-45, Apr 2004. [57]G. L. Wang and G. L. Semenza, "Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia," J Biol Chem, vol. 268, pp. 21513-8, Oct 15 1993. [58]S. Frohlich, J. Boylan, and P. McLoughlin, "Hypoxia-induced inflammation in the lung: a potential therapeutic target in acute lung injury?," Am J Respir Cell Mol Biol, vol. 48, pp. 271-9, Mar 2013. [59]M. R. Nicolls and N. F. Voelkel, "Hypoxia and the lung: beyond hypoxic vasoconstriction," Antioxid Redox Signal, vol. 9, pp. 741-3, Jun 2007. [60]D. A. Willoughby, A. R. Moore, P. R. Colville-Nash, and D. Gilroy, "Resolution of inflammation," Int J Immunopharmacol, vol. 22, pp. 1131-5, Dec 2000. [61]F. Gullotta, A. di Masi, and P. Ascenzi, "Carbon monoxide: an unusual drug," IUBMB Life, vol. 64, pp. 378-86, May 2012. [62]D. J. Slebos, S. W. Ryter, and A. M. Choi, "Heme oxygenase-1 and carbon monoxide in pulmonary medicine," Respir Res, vol. 4, p. 7, 2003. [63]L. E. Fredenburgh, M. A. Perrella, and S. A. Mitsialis, "The role of heme oxygenase-1 in pulmonary disease," Am J Respir Cell Mol Biol, vol. 36, pp. 158-65, Feb 2007. [64]H. Zhou, F. Lu, C. Latham, D. S. Zander, and G. A. Visner, "Heme oxygenase-1 expression in human lungs with cystic fibrosis and cytoprotective effects against Pseudomonas aeruginosa in vitro," Am J Respir Crit Care Med, vol. 170, pp. 633-40, Sep 15 2004. [65]S. Mumby, R. L. Upton, Y. Chen, S. J. Stanford, G. J. Quinlan, A. G. Nicholson, et al., "Lung heme oxygenase-1 is elevated in acute respiratory distress syndrome," Crit Care Med, vol. 32, pp. 1130-5, May 2004. [66]J. M. Siner, G. Jiang, Z. I. Cohen, P. Shan, X. Zhang, C. G. Lee, et al., "VEGF-induced heme oxygenase-1 confers cytoprotection from lethal hyperoxia in vivo," FASEB J, vol. 21, pp. 1422-32, May 2007. [67]J. E. Repine, A. Bast, and I. Lankhorst, "Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group," Am J Respir Crit Care Med, vol. 156, pp. 341-57, Aug 1997. [68]L. A. Applegate, P. Luscher, and R. M. Tyrrell, "Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells," Cancer Res, vol. 51, pp. 974-8, Feb 01 1991. [69]A. Jozkowicz, H. Was, and J. Dulak, "Heme oxygenase-1 in tumors: is it a false friend?," Antioxid Redox Signal, vol. 9, pp. 2099-117, Dec 2007. [70]K. Hirai, T. Sasahira, H. Ohmori, K. Fujii, and H. Kuniyasu, "Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice," Int J Cancer, vol. 120, pp. 500-5, Feb 01 2007. [71]P. Boschetto, E. Zeni, L. Mazzetti, D. Miotto, N. Lo Cascio, P. Maestrelli, et al., "Decreased heme-oxygenase (HO)-1 in the macrophages of non-small cell lung cancer," Lung Cancer, vol. 59, pp. 192-7, Feb 2008. [72]R. Von Burg, "Carbon monoxide," J Appl Toxicol, vol. 19, pp. 379-86, Sep-Oct 1999. [73]L. E. Otterbein, L. L. Mantell, and A. M. Choi, "Carbon monoxide provides protection against hyperoxic lung injury," Am J Physiol, vol. 276, pp. L688-94, Apr 1999. [74]R. Song, M. Kubo, D. Morse, Z. Zhou, X. Zhang, J. H. Dauber, et al., "Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects," Am J Pathol, vol. 163, pp. 231-42, Jul 2003. [75]J. T. Chapman, L. E. Otterbein, J. A. Elias, and A. M. Choi, "Carbon monoxide attenuates aeroallergen-induced inflammation in mice," Am J Physiol Lung Cell Mol Physiol, vol. 281, pp. L209-16, Jul 2001. [76]T. Fujita, K. Toda, A. Karimova, S. F. Yan, Y. Naka, S. F. Yet, et al., "Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis," Nat Med, vol. 7, pp. 598-604, May 2001. [77]L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, et al., "Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway," Nat Med, vol. 6, pp. 422-8, Apr 2000. [78]K. J. Peyton, S. V. Reyna, G. B. Chapman, D. Ensenat, X. M. Liu, H. Wang, et al., "Heme oxygenase-1-derived carbon monoxide is an autocrine inhibitor of vascular smooth muscle cell growth," Blood, vol. 99, pp. 4443-8, Jun 15 2002. [79]T. Morita, S. A. Mitsialis, H. Koike, Y. Liu, and S. Kourembanas, "Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells," J Biol Chem, vol. 272, pp. 32804-9, Dec 26 1997. [80]R. Song, R. S. Mahidhara, F. Liu, W. Ning, L. E. Otterbein, and A. M. Choi, "Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway," Am J Respir Cell Mol Biol, vol. 27, pp. 603-10, Nov 2002. [81]L. E. Otterbein, B. S. Zuckerbraun, M. Haga, F. Liu, R. Song, A. Usheva, et al., "Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury," Nat Med, vol. 9, pp. 183-90, Feb 2003. [82]T. Tsuburai, M. Suzuki, Y. Nagashima, S. Suzuki, S. Inoue, T. Hasiba, et al., "Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lung prevents bleomycin-induced pulmonary fibrosis via a Fas-Fas ligand-independent pathway," Hum Gene Ther, vol. 13, pp. 1945-60, Nov 01 2002. [83]X. Ji, K. Damera, Y. Zheng, B. Yu, L. E. Otterbein, and B. Wang, "Toward Carbon Monoxide-Based Therapeutics: Critical Drug Delivery and Developability Issues," J Pharm Sci, vol. 105, pp. 406-416, Feb 2016. [84]H. Was, J. Dulak, and A. Jozkowicz, "Heme oxygenase-1 in tumor biology and therapy," Curr Drug Targets, vol. 11, pp. 1551-70, Dec 2010. [85]R. Tenhunen, H. S. Marver, and R. Schmid, "The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin," J Lab Clin Med, vol. 75, pp. 410-21, Mar 1970. [86]W. K. McCoubrey, Jr., T. J. Huang, and M. D. Maines, "Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3," Eur J Biochem, vol. 247, pp. 725-32, Jul 15 1997. [87]R. Motterlini and L. E. Otterbein, "The therapeutic potential of carbon monoxide," Nat Rev Drug Discov, vol. 9, pp. 728-43, Sep 2010. [88]D. Gaynor and D. M. Griffith, "The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum," Dalton Trans, vol. 41, pp. 13239-57, Nov 21 2012. [89]P. J. Lee, B. H. Jiang, B. Y. Chin, N. V. Iyer, J. Alam, G. L. Semenza, et al., "Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia," J Biol Chem, vol. 272, pp. 5375-81, Feb 28 1997. [90]P. J. Barnes and M. Karin, "Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases," N Engl J Med, vol. 336, pp. 1066-71, Apr 10 1997. [91]Y. Y. Lo, J. A. Conquer, S. Grinstein, and T. F. Cruz, "Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species," J Cell Biochem, vol. 69, pp. 19-29, Apr 1 1998. [92]J. Megías, M. I. Guillén, A. Bru, F. Gomar, and M. J. Alcaraz. [93]T. H. Vu and Z. Werb, "Matrix metalloproteinases: effectors of development and normal physiology," Genes Dev, vol. 14, pp. 2123-33, Sep 1 2000. [94]J. D. Mott and Z. Werb, "Regulation of matrix biology by matrix metalloproteinases," Curr Opin Cell Biol, vol. 16, pp. 558-64, Oct 2004. [95]M. Giannandrea and W. C. Parks, "Diverse functions of matrix metalloproteinases during fibrosis," Dis Model Mech, vol. 7, pp. 193-203, Feb 2014. [96]D. Singh, S. K. Srivastava, T. K. Chaudhuri, and G. Upadhyay, "Multifaceted role of matrix metalloproteinases (MMPs)," Front Mol Biosci, vol. 2, p. 19, 2015. [97]S. Robert, T. Gicquel, T. Victoni, S. Valenca, E. Barreto, B. Bailly-Maitre, et al., "Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis," Biosci Rep, vol. 36, Aug 2016. [98]M. Kolb, P. Bonniaud, T. Galt, P. J. Sime, M. M. Kelly, P. J. Margetts, et al., "Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of "fibrosis-prone" and "fibrosis-resistant" mouse strains," Am J Respir Cell Mol Biol, vol. 27, pp. 141-50, Aug 2002. [99]R. K. Coker, G. J. Laurent, S. Shahzeidi, P. A. Lympany, R. M. du Bois, P. K. Jeffery, et al., "Transforming growth factors-beta 1, -beta 2, and -beta 3 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis," Am J Pathol, vol. 150, pp. 981-91, Mar 1997. [100]C. O'Connor, C. Odlum, A. Van Breda, C. Power, and M. X. Fitzgerald, "Collagenase and fibronectin in bronchoalveolar lavage fluid in patients with sarcoidosis," Thorax, vol. 43, pp. 393-400, May 1988. [101]J. E. Gadek, J. A. Kelman, G. Fells, S. E. Weinberger, A. L. Horwitz, H. Y. Reynolds, et al., "Collagenase in the lower respiratory tract of patients with idiopathic pulmonary fibrosis," N Engl J Med, vol. 301, pp. 737-42, Oct 04 1979. [102]H. Lemjabbar, P. Gosset, E. Lechapt-Zalcman, M. L. Franco-Montoya, B. Wallaert, A. Harf, et al., "Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment," Am J Respir Cell Mol Biol, vol. 20, pp. 903-13, May 1999. [103]M. K. Winkler and J. L. Fowlkes, "Metalloproteinase and growth factor interactions: do they play a role in pulmonary fibrosis?," Am J Physiol Lung Cell Mol Physiol, vol. 283, pp. L1-11, Jul 2002. [104]V. Falanga and R. S. Kirsner, "Low oxygen stimulates proliferation of fibroblasts seeded as single cells," J Cell Physiol, vol. 154, pp. 506-10, Mar 1993. [105]D. E. Eisenbud, "Oxygen in wound healing: nutrient, antibiotic, signaling molecule, and therapeutic agent," Clin Plast Surg, vol. 39, pp. 293-310, Jul 2012. [106]G. M. Saed, W. Zhang, and M. P. Diamond, "Effect of hypoxia on stimulatory effect of TGF-beta 1 on MMP-2 and MMP-9 activities in mouse fibroblasts," J Soc Gynecol Investig, vol. 7, pp. 348-54, Nov-Dec 2000. [107]B. Sun, D. Zhang, S. Zhang, W. Zhang, H. Guo, and X. Zhao, "Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma," Cancer Lett, vol. 249, pp. 188-97, May 8 2007. [108]Z. Lokmic, J. Musyoka, T. D. Hewitson, and I. A. Darby, "Hypoxia and hypoxia signaling in tissue repair and fibrosis," Int Rev Cell Mol Biol, vol. 296, pp. 139-85, 2012. [109]H. R. Rezvani, N. Ali, L. J. Nissen, G. Harfouche, H. de Verneuil, A. Taieb, et al., "HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders," J Invest Dermatol, vol. 131, pp. 1793-805, Sep 2011. [110]F. Zobi, "CO and CO-releasing molecules in medicinal chemistry," Future Med Chem, vol. 5, pp. 175-88, Feb 2013. [111]R. Motterlini, B. E. Mann, and R. Foresti, "Therapeutic applications of carbon monoxide-releasing molecules," Expert Opin Investig Drugs, vol. 14, pp. 1305-18, Nov 2005. [112]R. Foresti, M. G. Bani-Hani, and R. Motterlini, "Use of carbon monoxide as a therapeutic agent: promises and challenges," Intensive Care Med, vol. 34, pp. 649-58, Apr 2008. [113]A. A. Ahanger, S. Prawez, M. D. Leo, K. Kathirvel, D. Kumar, S. K. Tandan, et al., "Pro-healing potential of hemin: an inducer of heme oxygenase-1," Eur J Pharmacol, vol. 645, pp. 165-70, Oct 25 2010. [114]N. Theret, K. Lehti, O. Musso, and B. Clement, "MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells," Hepatology, vol. 30, pp. 462-8, Aug 1999. [115]T. Y. Tsui, C. K. Lau, J. Ma, X. Wu, Y. Q. Wang, S. Farkas, et al., "rAAV-mediated stable expression of heme oxygenase-1 in stellate cells: a new approach to attenuate liver fibrosis in rats," Hepatology, vol. 42, pp. 335-42, Aug 2005. [116]H. Zhao, S. Eguchi, A. Alam, and D. Ma, "The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury," Am J Physiol Lung Cell Mol Physiol, vol. 312, pp. L155-L162, Feb 1 2017. [117]A. Singh, G. Ling, A. N. Suhasini, P. Zhang, M. Yamamoto, A. Navas-Acien, et al., "Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs," Free Radic Biol Med, vol. 46, pp. 376-86, Feb 1 2009. [118]Y. Ishii, K. Itoh, Y. Morishima, T. Kimura, T. Kiwamoto, T. Iizuka, et al., "Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema," J Immunol, vol. 175, pp. 6968-75, Nov 15 2005. [119]R. R. Bartz and C. A. Piantadosi, "Clinical review: oxygen as a signaling molecule," Crit Care, vol. 14, p. 234, 2010. [120]B. Manoury, S. Nenan, O. Leclerc, I. Guenon, E. Boichot, J. M. Planquois, et al., "The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis," Respir Res, vol. 6, p. 11, Jan 21 2005. [121]P. A. Ward and G. W. Hunninghake, "Lung inflammation and fibrosis," Am J Respir Crit Care Med, vol. 157, pp. S123-9, Apr 1998. [122]A. Serrano-Mollar, D. Closa, N. Prats, S. Blesa, M. Martinez-Losa, J. Cortijo, et al., "In vivo antioxidant treatment protects against bleomycin-induced lung damage in rats," Br J Pharmacol, vol. 138, pp. 1037-48, Mar 2003. [123]M. Lahn, B. M. Paterson, K. Sundell, and D. Ma, "The role of protein kinase C-alpha (PKC-alpha) in malignancies of the gastrointestinal tract," Eur J Cancer, vol. 40, pp. 10-20, Jan 2004. [124]M. Wygrecka, B. K. Dahal, D. Kosanovic, F. Petersen, B. Taborski, S. von Gerlach, et al., "Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-alpha/Raf-1/p44/42 signaling pathway," Am J Pathol, vol. 182, pp. 2094-108, Jun 2013. [125]L. C. Cantley, "The phosphoinositide 3-kinase pathway," Science, vol. 296, pp. 1655-7, May 31 2002. [126]D. Roymans, B. Grobben, P. Claes, and H. Slegers, "Protein tyrosine kinase-dependent regulation of adenylate cyclase and phosphatidylinositol 3-kinase activates the expression of glial fibrillary acidic protein upon induction of differentiation in rat c6 glioma," Cell Biol Int, vol. 25, pp. 467-74, 2001. [127]D. A. Ricupero, C. F. Poliks, D. C. Rishikof, K. A. Cuttle, P. P. Kuang, and R. H. Goldstein, "Phosphatidylinositol 3-kinase-dependent stabilization of alpha1(I) collagen mRNA in human lung fibroblasts," Am J Physiol Cell Physiol, vol. 281, pp. C99-C105, Jul 2001. [128]Y. Xi, Y. Wei, B. Sennino, A. Ulsamer, I. Kwan, A. N. Brumwell, et al., "Identification of pY654-beta-catenin as a critical co-factor in hypoxia-inducible factor-1alpha signaling and tumor responses to hypoxia," Oncogene, vol. 32, pp. 5048-57, Oct 17 2013. [129]L. F. Li, K. C. Kao, Y. Y. Liu, C. W. Lin, N. H. Chen, C. S. Lee, et al., "Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway," J Cell Mol Med, vol. 21, pp. 2937-2949, Nov 2017. [130]M. Cargnello and P. P. Roux, "Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases," Microbiol Mol Biol Rev, vol. 75, pp. 50-83, Mar 2011. [131]A. Cuadrado and A. R. Nebreda, "Mechanisms and functions of p38 MAPK signalling," Biochem J, vol. 429, pp. 403-17, Aug 1 2010. [132]Y. Cao, Y. Liu, F. Ping, L. Yi, Z. Zeng, and Y. Li, "miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-beta/smad3 signaling pathways," Lab Invest, Dec 4 2017. [133]Y. Tian, Y. Li, J. Li, S. Feng, S. Li, J. Mao, et al., "Bufei Yishen Granules Combined with Acupoint Sticking Therapy Suppress Inflammation in Chronic Obstructive Pulmonary Disease Rats: Via JNK/p38 Signaling Pathway," Evid Based Complement Alternat Med, vol. 2017, p. 1768243, 2017. [134]L. Atzori, F. Chua, S. E. Dunsmore, D. Willis, M. Barbarisi, R. J. McAnulty, et al., "Attenuation of bleomycin induced pulmonary fibrosis in mice using the heme oxygenase inhibitor Zn-deuteroporphyrin IX-2,4-bisethylene glycol," Thorax, vol. 59, pp. 217-23, Mar 2004.
|