跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/13 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊佳芸
研究生(外文):JHUANG, JIA-YUN
論文名稱:評估一氧化碳釋放分子-2減少基質金屬蛋白酶9和2表現減緩肺部纖維化的能力
論文名稱(外文):Evaluation the Ability of Carbon Monoxide Releasing Molecule-2 Against Lung Fibrosis via Reducing Metalloproteinase 9 and 2 Expression
指導教授:林維寧
指導教授(外文):LIN, WEI-NING
口試委員:楊春茂陳立強黃國洋
口試委員(外文):YANG, CHUEN-MAOCHEN, LIH-CHYANGHUANG, KUO-YANG
口試日期:2018-07-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生物醫學暨藥學研究所碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:127
中文關鍵詞:肺部纖維化基質金屬蛋白酶9基質金屬蛋白酶2第一型血紅素氧化酶
外文關鍵詞:Lung fibrosismatrix metalloproteinases 9matrix metalloproteinases 2Heme oxygenase-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
肺臟是人體內和外界接觸面積最大的器官。肺臟的主要功能是氣體交換,提供氧氣給全身細胞所需維持生理功能的正常運作。一旦肺臟損傷,身體得不到充足的氧氣供應,細胞和器官就會因缺氧而逐漸失去功能,終至死亡。持續性肺部慢性損傷會造成細胞外基質(Extracellular matrix;ECM)和肺部結構的重組並趨向纖維化發展以及伴隨發炎反應的發生。正常狀況下的ECM組成包含膠原纖維(Collagen)、彈性纖維(Elastic Fiber)與結構性醣蛋白如纖連蛋白(Fibronectin)、層黏聯蛋白(Laminin)以及黏多醣多分子(Mucopolysaccharides)等,並受到基質金屬蛋白酶(Matrix metalloproteinases;MMPs)的調控。在小鼠實驗中已在肺部纖維化的統計中證實,MMPs的表現量與肺部的發炎反應有關;且MMPs參與纖維化嚴重程度的不同階段,MMPs能夠調節免疫、組織修復和組織重塑相關的過程,且在纖維化小鼠的肺部灌洗液中也偵測到高表現量的MMP9與MMP2。另一方面,一氧化碳釋放分子-2在生物體中能夠釋放少量一氧化碳;過去文獻說明,當組織受損會伴隨微環境缺氧的狀況形成並誘發相關的保護機制。第一型血紅素氧化酶是一個缺氧環境誘發蛋白質,被發現可以減緩肝臟纖維化的進程,但是第一型血紅素氧化酶與肺部纖維化的關係則較少被研究。因此我們著重於評估一氧化碳釋放分子-2藉由調控MMP9與MMP2表現量緩解纖維化的能力並探討相關的分子機制。我們以人類肺部纖維母細胞(WI-38細胞株)與博來黴素誘導的小鼠肺部纖維化模式為標的進行實驗研究。我們發現CORM-2 (Carbon Monoxide Releasing Molecule-2) 能調控NRF2、HIF-1與HO-1蛋白質表現增加,也可以隨著作用時間增加而減少MMP9與MMP2表現量。進一步將WI-38細胞前處理Ro31-8220、Gö-6976 (PKC抑制劑)、U0126 (ERK抑制劑)、SB202190 (p38 MAPK抑制劑)、SP600125 (JNK抑制劑)、N-acetylcysteine (ROS清除劑)、PP1 (Src抑制劑)都無法回復CORM-2減少MMP9與MMP2表現的情形。而前處理PI3-K抑制劑(LY294002)則能夠回復CORM-2對於MMP9與MMP2的作用。另外,藉由抑制HIF-1和HO-1或利用CO清除劑皆能夠降低CORM-2所造成MMP9與MMP2的減少;進一步實驗發現,CORM-2可以經由PI3-K調控HIF-1表現,進而增加HO-1基因表現導致細胞纖維化指標MMP9與MMP2的蛋白減少。而在小鼠模式方面,博來黴素誘發肺纖維化的小鼠實驗中,CORM-2也具有減少肺部組織膠原蛋白沉澱的能力,降低小鼠肺部白血球的聚集數量;再者,處理CORM-2也能夠減少MMP9和MMP2的mRNA表現。而在免疫組織染色的實驗結果也顯示CORM-2的處理可以增加小鼠肺部HIF-1、NRF-2與HO-1的蛋白質表現並減少博來黴素所導致的MMP9與MMP2的表現量。藉由這些細胞與動物模式實驗,CORM-2可以藉由PI3-K/HIF-1, NRF-2/HO-1路徑調控MMP9與MMP2表現量進而減少肺部纖維化的程度。
The main function of lung is oxygen exchange, which keeps the normal function of physiology via maintaining the oxygen concentration in the cells. Once injured and no enough oxygen supplement, the cells and organs lose functions that leads to the death. The persistent chronic lung injury results in the remodeling of extracellular matrix (ECM) and lung structure, companied with fibrosis and inflammation. The compositions of ECM in normal lung include collagen, elastic fiber and structure glycoproteins such as fibronectin, laminin, and mucopolysaccharides, regulated by matrix metalloproteinases (MMPs). Experimental models of fibrosis have shown the correlation between MMP expression and lung inflammation. The concentrations of MMP9 and MMP2 are high in the bronchoalveolar lavage of fibrotic mice, and participate in the fibrosis via regulating the immunity, tissue repair and remodeling. On the other hand, Carbon monoxide releasing Molecule-2 (CORM-2) promotes the repease of CO in organism. Previous literatures reveal that the injury of tissues promotes the protection mechanism with the hypoxia in microenvironment. Heme oxygenase-1 (HO-1) is a hypoxia-inducing protein and prevents progression of liver fibrosis. But, the correlation between HO-1 and lung fibrosis are less studied. We focus on evaluating the potentials of CORM-2 against lung fibrosis via regulating MMP9 and MMP2 expression and the relating molecular mechanisms. Human normal fibroblast (WI-38 cells) and bleomycin-stimulated lung fibrosis were used in this project. We found that CORM-2 (Carbon Monoxide Releasing Molecule-2) reduced MMP9 and MMP2 expression in WI-38 cells in a time dependent manner. Pretreatment inhibitors of PKC (Ro31-8220, Gö-6976), ERK (U0126), p38 MAPK (SB202190), JNK (SP600125), ROS (N-acetylcysteine) or Src (PP1) cannot reverse the decreased effects of CORM-2 on MMP9 and MMP2 expression. However, CORM-2-reduced MMP9 and MMP2 expression is attenuated by inhibitors of PI3K (LY294002). In addition, inhibiton of HIF-1 and HO-1 or scavenger of CO reverse the effects of CORM-2 on MMP9 and MMP2 expression. Further studies revel that CORM-2 increases HIF-1 expression via PI3-K, resulting in increased expression of HO-1 and decreased expression of fibrogenic marker, MMP9 and MMP2. On the aspect of in vivo model, CORM-2 reduced collagen deposition and leukocyte recruitments in lung tissues of bleomycin-treated mice. Treatment of COMR-2 reduces bleomycin-regulated MMP9 and MMP2 mRNA expression. Immunohistochemical assay further shows the increase of HIF-1, NRF-2 and HO-1 expression companied with decreased expression of MMP9 and MMP2 protein in CORM-2 treated mice. These studies reveal that CORM-2 facilitates the reduction of lung fibrosis via PI3-K/HIF-1, NRF-2/HO-1-down regulated MMP9 and MMP2 expression.
目錄 (Contents)

頁(page)
口試委員審定書
中文摘要 (Abstract in Chinese) i
英文摘要 (Abstract in English) iv
縮寫表 (Abbreviation) vii
致謝 (Acknowledgement) xii
目錄 (Contents) xiv
第一章 緒論 (Introduction) 1
第二章 研究目標 (Specific Aim) 34
第三章 實驗材料與方法設計 (Materials and Methods) 36
第四章 實驗結果 (Experimental Result) 47
第五章 討論 (Discussion) 54
第六章 結論 (Conclusion) 59
圖表 (Figures) 60
參考文獻 (Reference) 99


[1]J. C. Hogg and C. M. Doerschuk, "Leukocyte traffic in the lung," Annu Rev Physiol, vol. 57, pp. 97-114, 1995.
[2]A. R. Burns, C. W. Smith, and D. C. Walker, "Unique structural features that influence neutrophil emigration into the lung," Physiol Rev, vol. 83, pp. 309-36, Apr 2003.
[3]C. Kuhn, 3rd, "Ultrastructure and cellular function in the distal lung," Monogr Pathol, vol. 19, pp. 1-20, 1978.
[4]I. Y. Adamson and D. H. Bowden, "The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen," Lab Invest, vol. 30, pp. 35-42, Jan 1974.
[5]E. Spinelli Oliveira, J. T. Hancock, M. Hermes-Lima, D. A. Isola, M. Ochs, J. Yu, et al., "Implications of dealing with airborne substances and reactive oxygen species: what mammalian lungs, animals, and plants have to say?," Integr Comp Biol, vol. 47, pp. 578-91, Oct 2007.
[6]B. Moldoveanu, P. Otmishi, P. Jani, J. Walker, X. Sarmiento, J. Guardiola, et al.
[7]L. Ding, P. S. Linsley, L. Y. Huang, R. N. Germain, and E. M. Shevach, "IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression," J Immunol, vol. 151, pp. 1224-34, Aug 1 1993.
[8]T. Nittoh, H. Fujimori, Y. Kozumi, K. Ishihara, S. Mue, and K. Ohuchi, "Effects of glucocorticoids on apoptosis of infiltrated eosinophils and neutrophils in rats," Eur J Pharmacol, vol. 354, pp. 73-81, Jul 31 1998.
[9]B. Moldoveanu, P. Otmishi, P. Jani, J. Walker, X. Sarmiento, J. Guardiola, et al., "Inflammatory mechanisms in the lung," J Inflamm Res, vol. 2, pp. 1-11, 2009.
[10]V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, "Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF," J Clin Invest, vol. 101, pp. 890-8, Feb 15 1998.
[11]E. R. Sutherland and R. J. Martin, "Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma," J Allergy Clin Immunol, vol. 112, pp. 819-27; quiz 828, Nov 2003.
[12]A. Di Stefano, A. Capelli, M. Lusuardi, P. Balbo, C. Vecchio, P. Maestrelli, et al., "Severity of airflow limitation is associated with severity of airway inflammation in smokers," Am J Respir Crit Care Med, vol. 158, pp. 1277-85, Oct 1998.
[13]T. C. O'Shaughnessy, T. W. Ansari, N. C. Barnes, and P. K. Jeffery, "Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1," Am J Respir Crit Care Med, vol. 155, pp. 852-7, Mar 1997.
[14]H. Sarir, P. A. Henricks, A. H. van Houwelingen, F. P. Nijkamp, and G. Folkerts, "Cells, mediators and Toll-like receptors in COPD," Eur J Pharmacol, vol. 585, pp. 346-53, May 13 2008.
[15]I. T. Lee and C. M. Yang, "Inflammatory signalings involved in airway and pulmonary diseases," Mediators Inflamm, vol. 2013, p. 791231, 2013.
[16]R. M. Strieter and M. P. Keane, "Innate immunity dictates cytokine polarization relevant to the development of pulmonary fibrosis," J Clin Invest, vol. 114, pp. 165-8, Jul 2004.
[17]J. F. Pittet, M. J. Griffiths, T. Geiser, N. Kaminski, S. L. Dalton, X. Huang, et al., "TGF-beta is a critical mediator of acute lung injury," J Clin Invest, vol. 107, pp. 1537-44, Jun 2001.
[18]S. Ito, K. Ogawa, K. Takeuchi, M. Takagi, M. Yoshida, T. Hirokawa, et al., "A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis," J Biol Chem, Oct 12 2017.
[19]S. L. Friedman, D. Sheppard, J. S. Duffield, and S. Violette, "Therapy for fibrotic diseases: nearing the starting line," Sci Transl Med, vol. 5, p. 167sr1, Jan 09 2013.
[20]I. Y. Adamson, L. Young, and D. H. Bowden, "Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis," Am J Pathol, vol. 130, pp. 377-83, Feb 1988.
[21]A. L. Katzenstein and J. L. Myers, "Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification," Am J Respir Crit Care Med, vol. 157, pp. 1301-15, Apr 1998.
[22]C. Kuhn, 3rd, J. Boldt, T. E. King, Jr., E. Crouch, T. Vartio, and J. A. McDonald, "An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis," Am Rev Respir Dis, vol. 140, pp. 1693-703, Dec 1989.
[23]C. Kuhn and J. A. McDonald, "The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis," Am J Pathol, vol. 138, pp. 1257-65, May 1991.
[24]M. Selman, T. E. King, and A. Pardo, "Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy," Ann Intern Med, vol. 134, pp. 136-51, Jan 16 2001.
[25]M. Kasper and G. Haroske, "Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis," Histol Histopathol, vol. 11, pp. 463-83, Apr 1996.
[26]F. X. McCormack, T. E. King, Jr., D. R. Voelker, P. C. Robinson, and R. J. Mason, "Idiopathic pulmonary fibrosis. Abnormalities in the bronchoalveolar lavage content of surfactant protein A," Am Rev Respir Dis, vol. 144, pp. 160-6, Jul 1991.
[27]F. X. McCormack, T. E. King, Jr., B. L. Bucher, L. Nielsen, and R. J. Mason, "Surfactant protein A predicts survival in idiopathic pulmonary fibrosis," Am J Respir Crit Care Med, vol. 152, pp. 751-9, Aug 1995.
[28]A. Burkhardt, "Alveolitis and collapse in the pathogenesis of pulmonary fibrosis," Am Rev Respir Dis, vol. 140, pp. 513-24, Aug 1989.
[29]P. Martin, "Wound healing--aiming for perfect skin regeneration," Science, vol. 276, pp. 75-81, Apr 04 1997.
[30]H. A. Chapman, C. L. Allen, and O. L. Stone, "Abnormalities in pathways of alveolar fibrin turnover among patients with interstitial lung disease," Am Rev Respir Dis, vol. 133, pp. 437-43, Mar 1986.
[31]I. Kotani, A. Sato, H. Hayakawa, T. Urano, Y. Takada, and A. Takada, "Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis," Thromb Res, vol. 77, pp. 493-504, Mar 15 1995.
[32]S. Imokawa, A. Sato, H. Hayakawa, M. Kotani, T. Urano, and A. Takada, "Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis," Am J Respir Crit Care Med, vol. 156, pp. 631-6, Aug 1997.
[33]H. N. Antoniades, M. A. Bravo, R. E. Avila, T. Galanopoulos, J. Neville-Golden, M. Maxwell, et al., "Platelet-derived growth factor in idiopathic pulmonary fibrosis," J Clin Invest, vol. 86, pp. 1055-64, Oct 1990.
[34]T. A. Wynn, "Integrating mechanisms of pulmonary fibrosis," J Exp Med, vol. 208, pp. 1339-50, Jul 4 2011.
[35]J. Wilborn, L. J. Crofford, M. D. Burdick, S. L. Kunkel, R. M. Strieter, and M. Peters-Golden, "Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2," J Clin Invest, vol. 95, pp. 1861-8, Apr 1995.
[36]B. D. Uhal, I. Joshi, A. L. True, S. Mundle, A. Raza, A. Pardo, et al., "Fibroblasts isolated after fibrotic lung injury induce apoptosis of alveolar epithelial cells in vitro," Am J Physiol, vol. 269, pp. L819-28, Dec 1995.
[37]B. D. Uhal, I. Joshi, W. F. Hughes, C. Ramos, A. Pardo, and M. Selman, "Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung," Am J Physiol, vol. 275, pp. L1192-9, Dec 1998.
[38]P. D. Yurchenco and J. C. Schittny, "Molecular architecture of basement membranes," FASEB J, vol. 4, pp. 1577-90, Apr 01 1990.
[39]G. Raghu, L. J. Striker, L. D. Hudson, and G. E. Striker, "Extracellular matrix in normal and fibrotic human lungs," Am Rev Respir Dis, vol. 131, pp. 281-9, Feb 1985.
[40]A. Pardo, M. Selman, K. Ridge, R. Barrios, and J. I. Sznajder, "Increased expression of gelatinases and collagenase in rat lungs exposed to 100% oxygen," Am J Respir Crit Care Med, vol. 154, pp. 1067-75, Oct 1996.
[41]A. Pardo, R. Barrios, V. Maldonado, J. Melendez, J. Perez, V. Ruiz, et al., "Gelatinases A and B are up-regulated in rat lungs by subacute hyperoxia: pathogenetic implications," Am J Pathol, vol. 153, pp. 833-44, Sep 1998.
[42]Y. Fukuda, M. Ishizaki, S. Kudoh, M. Kitaichi, and N. Yamanaka, "Localization of matrix metalloproteinases-1, -2, and -9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases," Lab Invest, vol. 78, pp. 687-98, Jun 1998.
[43]A. R. Bihlet, M. A. Karsdal, J. M. Sand, D. J. Leeming, M. Roberts, W. White, et al., "Biomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD," Respir Res, vol. 18, p. 22, Jan 19 2017.
[44]M. Selman, V. Ruiz, S. Cabrera, L. Segura, R. Ramirez, R. Barrios, et al., "TIMP-1, -2, -3, and -4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment?," Am J Physiol Lung Cell Mol Physiol, vol. 279, pp. L562-74, Sep 2000.
[45]T. Hayashi, W. G. Stetler-Stevenson, M. V. Fleming, N. Fishback, M. N. Koss, L. A. Liotta, et al., "Immunohistochemical study of metalloproteinases and their tissue inhibitors in the lungs of patients with diffuse alveolar damage and idiopathic pulmonary fibrosis," Am J Pathol, vol. 149, pp. 1241-56, Oct 1996.
[46]T. Yaguchi, Y. Fukuda, M. Ishizaki, and N. Yamanaka, "Immunohistochemical and gelatin zymography studies for matrix metalloproteinases in bleomycin-induced pulmonary fibrosis," Pathol Int, vol. 48, pp. 954-63, Dec 1998.
[47]T. A. Wynn and T. R. Ramalingam, "Mechanisms of fibrosis: therapeutic translation for fibrotic disease," Nat Med, vol. 18, pp. 1028-40, Jul 06 2012.
[48]I. Sakaida, Y. Matsumura, M. Kubota, K. Kayano, K. Takenaka, and K. Okita, "The prolyl 4-hydroxylase inhibitor HOE 077 prevents activation of Ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L-amino acid-defined diet," Hepatology, vol. 23, pp. 755-63, Apr 1996.
[49]Y. Liu, Z. Wang, S. Q. Kwong, E. L. H. Lui, S. L. Friedman, F. R. Li, et al., "Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib," J Hepatol, vol. 55, pp. 612-625, Sep 2011.
[50]Z. Zhou, R. Song, C. L. Fattman, S. Greenhill, S. Alber, T. D. Oury, et al., "Carbon monoxide suppresses bleomycin-induced lung fibrosis," Am J Pathol, vol. 166, pp. 27-37, Jan 2005.
[51]N. F. Voelkel, R. W. Vandivier, and R. M. Tuder, "Vascular endothelial growth factor in the lung," Am J Physiol Lung Cell Mol Physiol, vol. 290, pp. L209-21, Feb 2006.
[52]B. Li, A. S. Lalani, T. C. Harding, B. Luan, K. Koprivnikar, G. Huan Tu, et al.
[53]W. X. Hong, M. S. Hu, M. Esquivel, G. Y. Liang, R. C. Rennert, A. McArdle, et al., "The Role of Hypoxia-Inducible Factor in Wound Healing," Adv Wound Care (New Rochelle), vol. 3, pp. 390-399, May 1 2014.
[54]N. Masson and P. J. Ratcliffe, "HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels," J Cell Sci, vol. 116, pp. 3041-9, Aug 01 2003.
[55]Y. J. Jung, J. S. Isaacs, S. Lee, J. Trepel, and L. Neckers, "IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis," FASEB J, vol. 17, pp. 2115-7, Nov 2003.
[56]I. B. Coimbra, S. A. Jimenez, D. F. Hawkins, S. Piera-Velazquez, and D. G. Stokes, "Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes," Osteoarthritis Cartilage, vol. 12, pp. 336-45, Apr 2004.
[57]G. L. Wang and G. L. Semenza, "Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia," J Biol Chem, vol. 268, pp. 21513-8, Oct 15 1993.
[58]S. Frohlich, J. Boylan, and P. McLoughlin, "Hypoxia-induced inflammation in the lung: a potential therapeutic target in acute lung injury?," Am J Respir Cell Mol Biol, vol. 48, pp. 271-9, Mar 2013.
[59]M. R. Nicolls and N. F. Voelkel, "Hypoxia and the lung: beyond hypoxic vasoconstriction," Antioxid Redox Signal, vol. 9, pp. 741-3, Jun 2007.
[60]D. A. Willoughby, A. R. Moore, P. R. Colville-Nash, and D. Gilroy, "Resolution of inflammation," Int J Immunopharmacol, vol. 22, pp. 1131-5, Dec 2000.
[61]F. Gullotta, A. di Masi, and P. Ascenzi, "Carbon monoxide: an unusual drug," IUBMB Life, vol. 64, pp. 378-86, May 2012.
[62]D. J. Slebos, S. W. Ryter, and A. M. Choi, "Heme oxygenase-1 and carbon monoxide in pulmonary medicine," Respir Res, vol. 4, p. 7, 2003.
[63]L. E. Fredenburgh, M. A. Perrella, and S. A. Mitsialis, "The role of heme oxygenase-1 in pulmonary disease," Am J Respir Cell Mol Biol, vol. 36, pp. 158-65, Feb 2007.
[64]H. Zhou, F. Lu, C. Latham, D. S. Zander, and G. A. Visner, "Heme oxygenase-1 expression in human lungs with cystic fibrosis and cytoprotective effects against Pseudomonas aeruginosa in vitro," Am J Respir Crit Care Med, vol. 170, pp. 633-40, Sep 15 2004.
[65]S. Mumby, R. L. Upton, Y. Chen, S. J. Stanford, G. J. Quinlan, A. G. Nicholson, et al., "Lung heme oxygenase-1 is elevated in acute respiratory distress syndrome," Crit Care Med, vol. 32, pp. 1130-5, May 2004.
[66]J. M. Siner, G. Jiang, Z. I. Cohen, P. Shan, X. Zhang, C. G. Lee, et al., "VEGF-induced heme oxygenase-1 confers cytoprotection from lethal hyperoxia in vivo," FASEB J, vol. 21, pp. 1422-32, May 2007.
[67]J. E. Repine, A. Bast, and I. Lankhorst, "Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group," Am J Respir Crit Care Med, vol. 156, pp. 341-57, Aug 1997.
[68]L. A. Applegate, P. Luscher, and R. M. Tyrrell, "Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells," Cancer Res, vol. 51, pp. 974-8, Feb 01 1991.
[69]A. Jozkowicz, H. Was, and J. Dulak, "Heme oxygenase-1 in tumors: is it a false friend?," Antioxid Redox Signal, vol. 9, pp. 2099-117, Dec 2007.
[70]K. Hirai, T. Sasahira, H. Ohmori, K. Fujii, and H. Kuniyasu, "Inhibition of heme oxygenase-1 by zinc protoporphyrin IX reduces tumor growth of LL/2 lung cancer in C57BL mice," Int J Cancer, vol. 120, pp. 500-5, Feb 01 2007.
[71]P. Boschetto, E. Zeni, L. Mazzetti, D. Miotto, N. Lo Cascio, P. Maestrelli, et al., "Decreased heme-oxygenase (HO)-1 in the macrophages of non-small cell lung cancer," Lung Cancer, vol. 59, pp. 192-7, Feb 2008.
[72]R. Von Burg, "Carbon monoxide," J Appl Toxicol, vol. 19, pp. 379-86, Sep-Oct 1999.
[73]L. E. Otterbein, L. L. Mantell, and A. M. Choi, "Carbon monoxide provides protection against hyperoxic lung injury," Am J Physiol, vol. 276, pp. L688-94, Apr 1999.
[74]R. Song, M. Kubo, D. Morse, Z. Zhou, X. Zhang, J. H. Dauber, et al., "Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects," Am J Pathol, vol. 163, pp. 231-42, Jul 2003.
[75]J. T. Chapman, L. E. Otterbein, J. A. Elias, and A. M. Choi, "Carbon monoxide attenuates aeroallergen-induced inflammation in mice," Am J Physiol Lung Cell Mol Physiol, vol. 281, pp. L209-16, Jul 2001.
[76]T. Fujita, K. Toda, A. Karimova, S. F. Yan, Y. Naka, S. F. Yet, et al., "Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis," Nat Med, vol. 7, pp. 598-604, May 2001.
[77]L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, et al., "Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway," Nat Med, vol. 6, pp. 422-8, Apr 2000.
[78]K. J. Peyton, S. V. Reyna, G. B. Chapman, D. Ensenat, X. M. Liu, H. Wang, et al., "Heme oxygenase-1-derived carbon monoxide is an autocrine inhibitor of vascular smooth muscle cell growth," Blood, vol. 99, pp. 4443-8, Jun 15 2002.
[79]T. Morita, S. A. Mitsialis, H. Koike, Y. Liu, and S. Kourembanas, "Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells," J Biol Chem, vol. 272, pp. 32804-9, Dec 26 1997.
[80]R. Song, R. S. Mahidhara, F. Liu, W. Ning, L. E. Otterbein, and A. M. Choi, "Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway," Am J Respir Cell Mol Biol, vol. 27, pp. 603-10, Nov 2002.
[81]L. E. Otterbein, B. S. Zuckerbraun, M. Haga, F. Liu, R. Song, A. Usheva, et al., "Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury," Nat Med, vol. 9, pp. 183-90, Feb 2003.
[82]T. Tsuburai, M. Suzuki, Y. Nagashima, S. Suzuki, S. Inoue, T. Hasiba, et al., "Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lung prevents bleomycin-induced pulmonary fibrosis via a Fas-Fas ligand-independent pathway," Hum Gene Ther, vol. 13, pp. 1945-60, Nov 01 2002.
[83]X. Ji, K. Damera, Y. Zheng, B. Yu, L. E. Otterbein, and B. Wang, "Toward Carbon Monoxide-Based Therapeutics: Critical Drug Delivery and Developability Issues," J Pharm Sci, vol. 105, pp. 406-416, Feb 2016.
[84]H. Was, J. Dulak, and A. Jozkowicz, "Heme oxygenase-1 in tumor biology and therapy," Curr Drug Targets, vol. 11, pp. 1551-70, Dec 2010.
[85]R. Tenhunen, H. S. Marver, and R. Schmid, "The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin," J Lab Clin Med, vol. 75, pp. 410-21, Mar 1970.
[86]W. K. McCoubrey, Jr., T. J. Huang, and M. D. Maines, "Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3," Eur J Biochem, vol. 247, pp. 725-32, Jul 15 1997.
[87]R. Motterlini and L. E. Otterbein, "The therapeutic potential of carbon monoxide," Nat Rev Drug Discov, vol. 9, pp. 728-43, Sep 2010.
[88]D. Gaynor and D. M. Griffith, "The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum," Dalton Trans, vol. 41, pp. 13239-57, Nov 21 2012.
[89]P. J. Lee, B. H. Jiang, B. Y. Chin, N. V. Iyer, J. Alam, G. L. Semenza, et al., "Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia," J Biol Chem, vol. 272, pp. 5375-81, Feb 28 1997.
[90]P. J. Barnes and M. Karin, "Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases," N Engl J Med, vol. 336, pp. 1066-71, Apr 10 1997.
[91]Y. Y. Lo, J. A. Conquer, S. Grinstein, and T. F. Cruz, "Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species," J Cell Biochem, vol. 69, pp. 19-29, Apr 1 1998.
[92]J. Megías, M. I. Guillén, A. Bru, F. Gomar, and M. J. Alcaraz.
[93]T. H. Vu and Z. Werb, "Matrix metalloproteinases: effectors of development and normal physiology," Genes Dev, vol. 14, pp. 2123-33, Sep 1 2000.
[94]J. D. Mott and Z. Werb, "Regulation of matrix biology by matrix metalloproteinases," Curr Opin Cell Biol, vol. 16, pp. 558-64, Oct 2004.
[95]M. Giannandrea and W. C. Parks, "Diverse functions of matrix metalloproteinases during fibrosis," Dis Model Mech, vol. 7, pp. 193-203, Feb 2014.
[96]D. Singh, S. K. Srivastava, T. K. Chaudhuri, and G. Upadhyay, "Multifaceted role of matrix metalloproteinases (MMPs)," Front Mol Biosci, vol. 2, p. 19, 2015.
[97]S. Robert, T. Gicquel, T. Victoni, S. Valenca, E. Barreto, B. Bailly-Maitre, et al., "Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis," Biosci Rep, vol. 36, Aug 2016.
[98]M. Kolb, P. Bonniaud, T. Galt, P. J. Sime, M. M. Kelly, P. J. Margetts, et al., "Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of "fibrosis-prone" and "fibrosis-resistant" mouse strains," Am J Respir Cell Mol Biol, vol. 27, pp. 141-50, Aug 2002.
[99]R. K. Coker, G. J. Laurent, S. Shahzeidi, P. A. Lympany, R. M. du Bois, P. K. Jeffery, et al., "Transforming growth factors-beta 1, -beta 2, and -beta 3 stimulate fibroblast procollagen production in vitro but are differentially expressed during bleomycin-induced lung fibrosis," Am J Pathol, vol. 150, pp. 981-91, Mar 1997.
[100]C. O'Connor, C. Odlum, A. Van Breda, C. Power, and M. X. Fitzgerald, "Collagenase and fibronectin in bronchoalveolar lavage fluid in patients with sarcoidosis," Thorax, vol. 43, pp. 393-400, May 1988.
[101]J. E. Gadek, J. A. Kelman, G. Fells, S. E. Weinberger, A. L. Horwitz, H. Y. Reynolds, et al., "Collagenase in the lower respiratory tract of patients with idiopathic pulmonary fibrosis," N Engl J Med, vol. 301, pp. 737-42, Oct 04 1979.
[102]H. Lemjabbar, P. Gosset, E. Lechapt-Zalcman, M. L. Franco-Montoya, B. Wallaert, A. Harf, et al., "Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment," Am J Respir Cell Mol Biol, vol. 20, pp. 903-13, May 1999.
[103]M. K. Winkler and J. L. Fowlkes, "Metalloproteinase and growth factor interactions: do they play a role in pulmonary fibrosis?," Am J Physiol Lung Cell Mol Physiol, vol. 283, pp. L1-11, Jul 2002.
[104]V. Falanga and R. S. Kirsner, "Low oxygen stimulates proliferation of fibroblasts seeded as single cells," J Cell Physiol, vol. 154, pp. 506-10, Mar 1993.
[105]D. E. Eisenbud, "Oxygen in wound healing: nutrient, antibiotic, signaling molecule, and therapeutic agent," Clin Plast Surg, vol. 39, pp. 293-310, Jul 2012.
[106]G. M. Saed, W. Zhang, and M. P. Diamond, "Effect of hypoxia on stimulatory effect of TGF-beta 1 on MMP-2 and MMP-9 activities in mouse fibroblasts," J Soc Gynecol Investig, vol. 7, pp. 348-54, Nov-Dec 2000.
[107]B. Sun, D. Zhang, S. Zhang, W. Zhang, H. Guo, and X. Zhao, "Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma," Cancer Lett, vol. 249, pp. 188-97, May 8 2007.
[108]Z. Lokmic, J. Musyoka, T. D. Hewitson, and I. A. Darby, "Hypoxia and hypoxia signaling in tissue repair and fibrosis," Int Rev Cell Mol Biol, vol. 296, pp. 139-85, 2012.
[109]H. R. Rezvani, N. Ali, L. J. Nissen, G. Harfouche, H. de Verneuil, A. Taieb, et al., "HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders," J Invest Dermatol, vol. 131, pp. 1793-805, Sep 2011.
[110]F. Zobi, "CO and CO-releasing molecules in medicinal chemistry," Future Med Chem, vol. 5, pp. 175-88, Feb 2013.
[111]R. Motterlini, B. E. Mann, and R. Foresti, "Therapeutic applications of carbon monoxide-releasing molecules," Expert Opin Investig Drugs, vol. 14, pp. 1305-18, Nov 2005.
[112]R. Foresti, M. G. Bani-Hani, and R. Motterlini, "Use of carbon monoxide as a therapeutic agent: promises and challenges," Intensive Care Med, vol. 34, pp. 649-58, Apr 2008.
[113]A. A. Ahanger, S. Prawez, M. D. Leo, K. Kathirvel, D. Kumar, S. K. Tandan, et al., "Pro-healing potential of hemin: an inducer of heme oxygenase-1," Eur J Pharmacol, vol. 645, pp. 165-70, Oct 25 2010.
[114]N. Theret, K. Lehti, O. Musso, and B. Clement, "MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells," Hepatology, vol. 30, pp. 462-8, Aug 1999.
[115]T. Y. Tsui, C. K. Lau, J. Ma, X. Wu, Y. Q. Wang, S. Farkas, et al., "rAAV-mediated stable expression of heme oxygenase-1 in stellate cells: a new approach to attenuate liver fibrosis in rats," Hepatology, vol. 42, pp. 335-42, Aug 2005.
[116]H. Zhao, S. Eguchi, A. Alam, and D. Ma, "The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury," Am J Physiol Lung Cell Mol Physiol, vol. 312, pp. L155-L162, Feb 1 2017.
[117]A. Singh, G. Ling, A. N. Suhasini, P. Zhang, M. Yamamoto, A. Navas-Acien, et al., "Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs," Free Radic Biol Med, vol. 46, pp. 376-86, Feb 1 2009.
[118]Y. Ishii, K. Itoh, Y. Morishima, T. Kimura, T. Kiwamoto, T. Iizuka, et al., "Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema," J Immunol, vol. 175, pp. 6968-75, Nov 15 2005.
[119]R. R. Bartz and C. A. Piantadosi, "Clinical review: oxygen as a signaling molecule," Crit Care, vol. 14, p. 234, 2010.
[120]B. Manoury, S. Nenan, O. Leclerc, I. Guenon, E. Boichot, J. M. Planquois, et al., "The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis," Respir Res, vol. 6, p. 11, Jan 21 2005.
[121]P. A. Ward and G. W. Hunninghake, "Lung inflammation and fibrosis," Am J Respir Crit Care Med, vol. 157, pp. S123-9, Apr 1998.
[122]A. Serrano-Mollar, D. Closa, N. Prats, S. Blesa, M. Martinez-Losa, J. Cortijo, et al., "In vivo antioxidant treatment protects against bleomycin-induced lung damage in rats," Br J Pharmacol, vol. 138, pp. 1037-48, Mar 2003.
[123]M. Lahn, B. M. Paterson, K. Sundell, and D. Ma, "The role of protein kinase C-alpha (PKC-alpha) in malignancies of the gastrointestinal tract," Eur J Cancer, vol. 40, pp. 10-20, Jan 2004.
[124]M. Wygrecka, B. K. Dahal, D. Kosanovic, F. Petersen, B. Taborski, S. von Gerlach, et al., "Mast cells and fibroblasts work in concert to aggravate pulmonary fibrosis: role of transmembrane SCF and the PAR-2/PKC-alpha/Raf-1/p44/42 signaling pathway," Am J Pathol, vol. 182, pp. 2094-108, Jun 2013.
[125]L. C. Cantley, "The phosphoinositide 3-kinase pathway," Science, vol. 296, pp. 1655-7, May 31 2002.
[126]D. Roymans, B. Grobben, P. Claes, and H. Slegers, "Protein tyrosine kinase-dependent regulation of adenylate cyclase and phosphatidylinositol 3-kinase activates the expression of glial fibrillary acidic protein upon induction of differentiation in rat c6 glioma," Cell Biol Int, vol. 25, pp. 467-74, 2001.
[127]D. A. Ricupero, C. F. Poliks, D. C. Rishikof, K. A. Cuttle, P. P. Kuang, and R. H. Goldstein, "Phosphatidylinositol 3-kinase-dependent stabilization of alpha1(I) collagen mRNA in human lung fibroblasts," Am J Physiol Cell Physiol, vol. 281, pp. C99-C105, Jul 2001.
[128]Y. Xi, Y. Wei, B. Sennino, A. Ulsamer, I. Kwan, A. N. Brumwell, et al., "Identification of pY654-beta-catenin as a critical co-factor in hypoxia-inducible factor-1alpha signaling and tumor responses to hypoxia," Oncogene, vol. 32, pp. 5048-57, Oct 17 2013.
[129]L. F. Li, K. C. Kao, Y. Y. Liu, C. W. Lin, N. H. Chen, C. S. Lee, et al., "Nintedanib reduces ventilation-augmented bleomycin-induced epithelial-mesenchymal transition and lung fibrosis through suppression of the Src pathway," J Cell Mol Med, vol. 21, pp. 2937-2949, Nov 2017.
[130]M. Cargnello and P. P. Roux, "Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases," Microbiol Mol Biol Rev, vol. 75, pp. 50-83, Mar 2011.
[131]A. Cuadrado and A. R. Nebreda, "Mechanisms and functions of p38 MAPK signalling," Biochem J, vol. 429, pp. 403-17, Aug 1 2010.
[132]Y. Cao, Y. Liu, F. Ping, L. Yi, Z. Zeng, and Y. Li, "miR-200b/c attenuates lipopolysaccharide-induced early pulmonary fibrosis by targeting ZEB1/2 via p38 MAPK and TGF-beta/smad3 signaling pathways," Lab Invest, Dec 4 2017.
[133]Y. Tian, Y. Li, J. Li, S. Feng, S. Li, J. Mao, et al., "Bufei Yishen Granules Combined with Acupoint Sticking Therapy Suppress Inflammation in Chronic Obstructive Pulmonary Disease Rats: Via JNK/p38 Signaling Pathway," Evid Based Complement Alternat Med, vol. 2017, p. 1768243, 2017.
[134]L. Atzori, F. Chua, S. E. Dunsmore, D. Willis, M. Barbarisi, R. J. McAnulty, et al., "Attenuation of bleomycin induced pulmonary fibrosis in mice using the heme oxygenase inhibitor Zn-deuteroporphyrin IX-2,4-bisethylene glycol," Thorax, vol. 59, pp. 217-23, Mar 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top