跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲瑜
研究生(外文):Che-Yu Chang
論文名稱:下顎“All-on-four”治療方式中非傾斜與傾斜近心植體的比較: 三維有限元素分析
論文名稱(外文):Comparison of non-tilted and tilted mesial implants for mandibular “All-on-four” treatment protocol: A 3-D finite element analysis
指導教授:許明倫許明倫引用關係陳振昇陳振昇引用關係
指導教授(外文):Ming-Lun HsuChen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:68
中文關鍵詞:All-on-four傾斜植體有限元素分析
外文關鍵詞:All-on-fourtilted implantfinite element analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
研究目的
探討下顎骨在”All-on-four”治療原則下,前牙區近心植體種植角度傾斜與否,以及植體未完全骨整合與百分之百骨整合後,對植體周圍骨組織生物力學效應的影響。

材料與方法
建立下顎骨、植體及贗復物的三維有限元素模型,其中一組依照”All-on-four”治療原則,另一組將兩側前牙區近心植體植入角度改成往近心傾斜。植體-骨介面則分為未完全骨整合與百分之百骨整合之條件。於左側第一大臼齒區施予斜向咬合力後,觀察植體周圍骨應力的變化,及未完全骨整合時植體的微移動量。

結果
無論是傾斜或非傾斜近心植體模型,在兩種不同的骨整合介面,皮質骨和海綿骨內所產生的等效應力和主應力的最大值皆出現在施力端遠心植體周圍。在同一種骨整合介面下,傾斜或非傾斜近心植體模型骨應力的分布相近,但傾斜近心植體模型植體周圍骨應力值較小,下降比率可多達66%。未完全骨整合時,應力會較平均分散於皮質骨和海綿骨以及各植體周圍;完全骨整合後,應力較集中於近受力端植體周圍的皮質骨。而未完全骨整合時各植體的微小移動量,在傾斜或非傾斜近心植體模型中皆相近。

結論
當下顎以”All-on-four”治療,將近心植體改成傾斜植入,在單側後牙咬合力之下,整體骨應力的分布及未完全骨整合時植體的初期穩定度與傳統非傾斜近心植體相似;而完全骨整合後的長期植體周圍骨應力比傳統非傾斜近心植體模型更低。

Purpose:
The aim of this study was to evaluate the biomechanical effect of peri-implant bone between non-tilted and tilted mesial implants for mandibular “All-on-four” treatment protocol. The difference of the biomechanical effect between the conditions of complete and imperfect osseointegration would be evaluated as well.

Materials and methods:
Three-dimensional FE models were consisted of mandibular bone, dental implants and superstructures with two different configurations: one model follow the “All-on-four” protocol, the other one changed the inserted angle of bilateral mesial implants with mesially tilted by 30 degrees. Imperfect and complete osseointegration were simulated and 250 N oblique occlusal loading was applied on the occlusal surface of left first molar. Stress of peri-implant bone and micromotion of implants were determined.

Results:
Under the same bone-to-implant interface, the distribution of peri-implant bone stress was similar in tilted and non-tilted models; however, the stress value of peri-implant bone was lower (up to 66%) in tilted model. Stress concentrated in cortical bone and implant near loading area when complete osseointegrated; however, under imperfect osseointegration, stress more evenly distributed in both cortical and cancellous bone and around each implant. The micromotion of implants were similar in both models under imperfect osseointegration.

Conclusions:
Changing the inserted angle of mesial implants in “All-on-four” protocol did not obviously alter the pattern of stress distribution and the primary stability of implants under imperfect osseointegration. However, the stress value of peri-implant bone was lower than non-tilted model after complete osseointegration.

目錄
目錄……………………………………………………………………I
圖目錄…………………………………………………………………V
表目錄………………………………………………………………VII
中文摘要………………………………………………………… VIII
英文摘要………………………………………………………………X

第一章 緒論 1
1.1 前言 1
1.2“All-on-four”治療方式的文獻回顧 2
1.2.1“All-on-four”的定義 2
1.2.2“All-on-four”的相關研究 2
1.2.3“All-on-four”的優缺點 4
1.3 傾斜植體的文獻回顧 6
1.4 桁架(Truss)的簡介 8
1.5 有限元素分析 9
1.6 研究目的 14


第二章 研究材料與方法 15
2.1 研究流程 15
2.2 三維幾何模型建立 15
2.2.1 下顎骨模型 15
2.2.2 植體與支柱體模型 16
2.2.3 橫桿模型 17
2.3 材料性質的設定 17
2.4 介面的設定 18
2.5 有限元素模型的建立 18
2.6 邊界條件的設定 19
2.7 施力條件的設定 20
2.7.1 力量大小 20
2.7.2 力量方向 20
2.8 收斂測試與驗證 21
2.9 分析目標 22



第三章 結果 23
3.1 收斂測試與驗證之結果 23
3.1.1 收斂測試結果 23
3.1.2 模型驗證結果 23
3.2 等效應力在下顎骨的分布情形 24
3.2.1 等效應力在皮質骨的分布情形 24
3.2.2 等效應力在海綿骨的分布情形 25
3.3 主應力在下顎骨的分布情形 26
3.3.1 主應力在皮質骨的分布情形 26
3.3.2 主應力在海綿骨的分布情形 27
3.4 未完全骨整合植體的微小移動(Micromotion) 28

第四章 討論 29
4.1 測量工具 29
4.2 有限元素模型的驗證 29
4.3 植體周圍骨應力的探討 30
4.3.1 近心植體角度對骨應力的影響 31
4.3.2 骨整合程度對骨應力的影響 32
4.4 植體微小移動的探討 33
4.5 本研究的限制與未來研究方向 34

第五章 結論 36
附圖 37
附表 60
參考文獻 65























1. Basa, S., A. Varol, and N. Turker, Alternative bone expansion technique for immediate placement of implants in the edentulous posterior mandibular ridge: a clinical report. Int J Oral Maxillofac Implants, 2004. 19(4): p. 554-8.
2. Shimoyama, T., et al., Ridge widening and immediate implant placement: a case report. Implant Dent, 2001. 10(2): p. 108-12.
3. das Neves, F.D., et al., Short implants--an analysis of longitudinal studies. Int J Oral Maxillofac Implants, 2006. 21(1): p. 86-93.
4. Renouard, F. and D. Nisand, Impact of implant length and diameter on survival rates. Clin Oral Implants Res, 2006. 17 Suppl 2: p. 35-51.
5. Watzinger, F., et al., Placement of endosteal implants in the zygoma after maxillectomy: a Cadaver study using surgical navigation. Plast Reconstr Surg, 2001. 107(3): p. 659-67.
6. Rosenquist, B., Fixture placement posterior to the mental foramen with transpositioning of the inferior alveolar nerve. Int J Oral Maxillofac Implants, 1992. 7(1): p. 45-50.
7. Krekmanov, L., et al., Tilting of posterior mandibular and maxillary implants for improved prosthesis support. Int J Oral Maxillofac Implants, 2000. 15(3): p. 405-14.
8. Del Fabbro, M., et al., Tilted implants for the rehabilitation of edentulous jaws: a systematic review. Clin Implant Dent Relat Res, 2012. 14(4): p. 612-21.
9. Malo, P., B. Rangert, and M. Nobre, "All-on-Four" immediate-function concept with Branemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res, 2003. 5 Suppl 1: p. 2-9.
10. Patzelt, S.B., et al., The All-on-Four Treatment Concept: A Systematic Review. Clin Implant Dent Relat Res, 2013. 16(6): p. 836-55.
11. Malo, P., et al., A longitudinal study of the survival of All-on-4 implants in the mandible with up to 10 years of follow-up. J Am Dent Assoc, 2011. 142(3): p. 310-20.
12. Balshi, T.J., et al., A retrospective analysis of 800 Branemark System implants following the All-on-Four protocol. J Prosthodont, 2014. 23(2): p. 83-8.
13. Di, P., et al., The All-on-Four implant therapy protocol in the management of edentulous Chinese patients. Int J Prosthodont, 2013. 26(6): p. 509-16.
14. De Rossi, M., et al., All on Four(R) fixed implant support rehabilitation: a masticatory function study. Clin Implant Dent Relat Res, 2013. 16(4): p. 594-600.
15. Dellavia, C., et al., Electromyographic assessment of jaw muscles in patients with All-on-Four fixed implant-supported prostheses. J Oral Rehabil, 2012. 39(12): p. 896-904.
16. Van Lierde, K.M., et al., Impact of fixed implant prosthetics using the 'all-on-four' treatment concept on speech intelligibility, articulation and oromyofunctional behaviour. Int J Oral Maxillofac Surg, 2012. 41(12): p. 1550-7.
17. Att, W., J. Bernhart, and J.R. Strub, Fixed rehabilitation of the edentulous maxilla: possibilities and clinical outcome. J Oral Maxillofac Surg, 2009. 67(11 Suppl): p. 60-73.
18. Att, W. and C. Stappert, Implant therapy to improve quality of life. Quintessence Int, 2003. 34(8): p. 573-81.
19. Chiapasco, M. and C. Gatti, Implant-retained mandibular overdentures with immediate loading: a 3- to 8-year prospective study on 328 implants. Clin Implant Dent Relat Res, 2003. 5(1): p. 29-38.
20. Degidi, M. and A. Piattelli, 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Implantol, 2005. 31(1): p. 25-31.
21. Babbush, C.A., et al., Patient-related and financial outcomes analysis of conventional full-arch rehabilitation versus the All-on-4 concept: a cohort study. Implant Dent, 2014. 23(2): p. 218-24.
22. Francetti, L., et al., Medium- and Long-Term Complications in Full-Arch Rehabilitations Supported by Upright and Tilted Implants. Clin Implant Dent Relat Res, 2013. Nov 28. doi: 10.1111/cid.12180. [Epub ahead of print]
23. Malo, P., et al., Double Full-Arch Versus Single Full-Arch, Four Implant-Supported Rehabilitations: A Retrospective, 5-Year Cohort Study. J Prosthodont, 2014. Oct 1. doi: 10.1111/jopr.12228. [Epub ahead of print]
24. Watanabe, F., et al., Finite element analysis of the influence of implant inclination, loading position, and load direction on stress distribution. Odontology, 2003. 91(1): p. 31-6.
25. Rangert, B.R., R.M. Sullivan, and T.M. Jemt, Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants, 1997. 12(3): p. 360-70.
26. Zampelis, A., B. Rangert, and L. Heijl, Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. J Prosthet Dent, 2007. 97(6 Suppl): p. S35-43.
27. Del Fabbro, M. and V. Ceresoli, The fate of marginal bone around axial vs. tilted implants: a systematic review. Eur J Oral Implantol, 2014. 7 Suppl 2: p. S171-89.
28. Menini, M., et al., Tilted implants in the immediate loading rehabilitation of the maxilla: a systematic review. J Dent Res, 2012. 91(9): p. 821-7.
29. Monje, A., et al., Marginal bone loss around tilted implants in comparison to straight implants: a meta-analysis. Int J Oral Maxillofac Implants, 2012. 27(6): p. 1576-83.
30. Chrcanovic, B.R., T. Albrektsson, and A. Wennerberg, Tilted versus axially placed dental implants: A meta-analysis. J Dent, 2015. 43, p.149-170
31. Anthony Bedford, W.F., Kenneth M. Liechti, Statics and mechanics of materials. 2003. p.236-239
32. Lee, H.-H., Finite element simulations with ANSYS Workbench 15. 2014: p. 31.
33. Logan, D.L., A first course in the finite element method. 2012. Fifth edition, Chapter 1. p.2-24
34. Weinstein, A.M., et al., Stress analysis of porous rooted dental implants. J Dent Res, 1976. 55(5): p. 772-7.
35. O'Mahony, A.M., J.L. Williams, and P. Spencer, Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res, 2001. 12(6): p. 648-57.
36. Teixeira, E.R., et al., A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil, 1998. 25(4): p. 299-303.
37. Bonnet, A.S., M. Postaire, and P. Lipinski, Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position. Med Eng Phys, 2009. 31(7): p. 806-15.
38. Niinomi, M., Mechanical properties of biomedical titanium alloys Materials Science and Engineering A, 1998. 243(1-2): p. 231-236.
39. Dechow, P.C., et al., Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol, 1993. 90(3): p. 291-306.
40. O'Mahony, A.M., et al., Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res, 2000. 11(5): p. 415-21.
41. Rancourt, D., et al., Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J Biomed Mater Res, 1990. 24(11): p. 1503-19.
42. http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID186.pdf.
43. http://inside.mines.edu/~apetrell/ENME442/Documents/SOLID187.pdf.
44. Ferrario, V.F., et al., Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent, 2004. 32(6): p. 451-7.
45. Fontijn-Tekamp, F.A., et al., Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res, 2000. 79(7): p. 1519-24.
46. Ishigaki, S., et al., Biomechanical stress in bone surrounding an implant under simulated chewing. Clin Oral Implants Res, 2003. 14(1): p. 97-102.
47. Naini, R.B., et al., Tilted or parallel implant placement in the completely edentulous mandible? A three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2011. 26(4): p. 776-81.
48. Brunski, J.B., Avoid pitfalls of overloading and micromotion of intraosseous implants. Dent Implantol Update, 1993. 4(10): p. 77-81.
49. Winter, W., D. Klein, and M. Karl, Effect of model parameters on finite element analysis of micromotions in implant dentistry. J Oral Implantol, 2013. 39(1): p. 23-9.
50. Eggers, G.W., T.O. Shindler, and C.M. Pomerat, The influence of the contact-compression factor on osteogenesis in surgical fractures. J Bone Joint Surg Am, 1949. 31A(4): p. 693-716.
51. Baggi, L., et al., Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. J Prosthet Dent, 2013. 109(1): p. 9-21.
52. Pilliar, R.M.D., D.; Watson, P. A., tissue-implant interface: micro-movements effects. Vincenzini, P., Ed. Materials in Clinical Applications, Advances in Science and Technology, 12, Proceedings of the 8th CIMTEC World Ceramic Congress. Faenza, Italy: Techna;. 1995: p. 569-579.
53. Kitamura, E., et al., Influence of marginal bone resorption on stress around an implant--a three-dimensional finite element analysis. J Oral Rehabil, 2005. 32(4): p. 279-86.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊