跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林亞慧
研究生(外文):Lin, Ya-Hui
論文名稱:利用CRISPR/Cas9剔除肺癌細胞中SQSTM1基因探討對細胞型態、移行作用及抗癌化合物藥效的影響
論文名稱(外文):CRISPR/Cas9-based knockout of SQSTM1 affects cellular morphology, migration and anticancer compound efficacy in lung cancer cells
指導教授:趙瑞益趙瑞益引用關係
指導教授(外文):Chao, Jui-I
口試委員:鄭鈞文趙瑞益洪文俊周裕挺
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:42
中文關鍵詞:肺癌選擇性自噬作用
外文關鍵詞:CRISPR/Cas9SQSTM1selective autophagymigration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾十年來,肺癌在世界與台灣是癌症死亡率的主要原因。自噬作用是一種細胞內的防禦機制,藉由分解不正常的物質、胞器及外來病原體以維持細胞內的平衡狀態。自噬作用機制並不是毫無選擇性的降解途徑。不同的物質會透過一些特定的自噬作用受體進行辨識後再進行降解。其中,SQSTM1是一個重要的選擇性自噬作用受體,能使泛素化的物質接上LC3形成自噬體,接著進行降解作用。然而SQSTM1在肺癌細胞中扮演的角色以及能否作為治療的標靶仍不清楚。在本研究中,我們利用CRISPR/Cas9基因編輯技術將肺癌細胞中的SQSTM1基因剔除,並以西方墨點法及免疫螢光染色驗證這些細胞確實無法表現SQSTM1蛋白。此外,我們進一步以核酸定序找出被剔除的SQSTM1基因序列片段,利用CRISPR/Cas9基因編輯技術確實能將SQSTM1剔除而不會影響其他選擇性自噬作用受體OPTN和NDP52及自噬路徑的關鍵蛋白LC3,但剔除SQSTM1基因的肺癌細胞,會造成細胞型態的改變,以及降低細胞的移行能力,RhoA與Cdc42的蛋白表現在SQSTM1基因剔除的肺癌細胞中也會大幅下降,但不會影響Rac1的表現。再者,剔除SQSTM1基因會降低自噬作用抑制藥物Chloroquine在肺癌細胞中的藥效,而自噬作用促進藥物Rapamycin的藥效則不受到影響。總結上述結果,我們證實在肺癌細胞中剔除SQSTM1基因會影響細胞的型態、移行能力及特定抗癌化合物的藥效,我們推測SQSTM1是具有潛力的選擇性自噬作用受體,可開發作為未來肺癌的治療標靶。
Lung cancer is one of leading cause of cancer death in the world and Taiwan during the past few decades. Autophagy is a mechanism of the cells that disassembles aberrant components, organelles, and intracellular pathogens to maintain the cellular homeostasis. The process of autophagy is not simply a non-selective degradation pathway. Selective autophagy receptors have been identified which specifically mediate the selective autophagosomal degradation of a variety of cargoes. SQSTM1 is a pivotal selective autophagy receptor recruits LC3-containing autophagosomes to ubiquitinated cargos for degradation. However, the role of SQSTM1 in lung cancer cells and whether can be applied as a target for lung cancer therapy are still unclear yet. In this study, we generated the SQSTM1 knockout in lung cancer cells using the CRISPR/Cas9 gene editing technique. The SQSTM1 knockout cells were verified by western blot and immunofluorescence staining. Furthermore, the SQSTM1 knockout fragments were determined by DNA sequencing. The results showed that CRISPR/Cas9 gene editing specifically knockout SQSTM1 but not delete other autophagy receptors, such as OPTN and NDP52, and autophagy pathway key protein LC3. Nonetheless, we found that knockout of SQSTM1 induced the morphological alteration and attenuated the cell migration ability in the lung cancer cells. The protein levels of RhoA and Cdc42 but not Rac1 were dramatically decreased in both the SQSTM1 knockout lung cancer cells. Besides, knockout of SQSTM1 reduced the efficacy of Chloroquine, an autophagy inhibitor, in lung cancer cells; however, it did not alter the efficacy of Rapamycin, an autophagy inducer. Taken together, this study demonstrated that knockout of SQSTM1 affected the cellular morphology, migration and specific anticancer compound efficacy in the lung cancer cells. We suggest that SQSTM1 is a potential selective autophagy receptor that can be developed as target for lung cancer therapy.
Contents i
中文摘要 iii
Abstract iv
Abbreviations v
1. Introduction 1
1.1. Lung cancer 1
1.2. Biological functions of autophagy pathway 1
1.3. Selective autophagy receptor 2
1.4. Selective autophagy receptors in cancer progression 2
1.5. Rho GTPases in cancer metastasis 3
1.6. Autophagy drugs for cancer therapy 3
1.7. CRISPR/Cas9 knockout system 4
1.8. Purpose of this study 5
2. Materials and methods 6
2.1. Chemicals and reagents 6
2.2. Antibodies 6
2.3. Cell lines and cell culture 7
2.4. Western blot analysis 7
2.5. Immunofluorescence staining and confocal microscopy 8
2.6. Cell growth assay 9
2.7. Reverse transcription-polymerase chain reaction (RT-PCR) 9
2.8. Generation of knockout cell lines using CRISPR/Cas9 gene editing technique 10
2.9. Cell viability assay 10
2.10. Wound-healing assay 11
2.11. Statistical analysis 11
3. Results 12
3.1. Generation and identification of SQSTM1 knockout in A549 lung cancer cells 12
3.2. Generation and identification of SQSTM1 knockout in H1975 lung cancer cells …………………………………………………………………………………..13
3.3. The protein expressions of autophagy pathway in the SQSTM1 knockout lung cancer cells 13
3.4. The cellular morphology and migration ability in the SQSTM1 knockout lung cancer cells 14
3.5. The efficacy of anticancer compounds in the SQSTM1 knockout lung cancer cells.......... 15
4. Conclusions 15
5. References 16
6. Figures 22
Figure 1. The generation of SQSTM1 gene knockout in lung cancer cells using CRISPR/Cas9 gene editing. 22
Figure 2. The verification of protein levels of SQSTM1 in the A549 SQSTM1 knockout cells by western blot and confocal microscopy. 23
Figure 3. The DNA sequencing of the SQSTM1 knockout in the A549 cells. 24
Figure 4. The deletion of 138 nucleotides in the A549 SQSTM1 KO #4 cells. 25
Figure 5. The generation of SQSTM1 gene knockout in lung cancer cells using CRISPR/Cas9 gene editing. 26
Figure 6. The verification of protein levels of SQSTM1 in the H1975 SQSTM1 knockout cells by western blot and confocal microscopy. 27
Figure 7. The deletions of 372 and 204 nucleotides in the H1975 SQSTM1 KO #5 and #6 cells. 28
Figure 8. The protein alteration of autophagy pathways in the SQSTM1 knockout cells of A549 and H1975. 29
Figure 9. The morphology of A549 SQSTM1 knockout cells differs from A549 wild-type cells. 30
Figure 10. The morphology of H1975 SQSTM1 knockout cells differs from H1975 wild-type cells. 31
Figure 11. Comparison of cell growth ability in the A549, H1975 and SQSTM1 knockout cells. 32
Figure 12. Knockout of SQSTM1 attenuates the cell migration ability in A549 cells. 33
Figure 13. Knockout of SQSTM1 decreases Rho GTPase family protein expression in A549 and H1975 cells 34
Figure 14. Knockout of SQSTM1 reduces the efficacy of Chloroquine. 35
Figure 15. Knockout of SQSTM1 does not reduce the efficacy of Rapamycin. 36
Figure 16. The model of SQSTM1 knockout in lung cancer cells. 37
7. Appendixes 38
Appendix 1. The major types of lung cancer. 38
Appendix 2. Selective autophagy. 39
Appendix 3. Domain architecture of the known characterized autophagy receptors. 40
Appendix 4. Roles of Cdc42, Rac and Rho in cellular migration. 41
Appendix 5. CRISPR/Cas9 system. 42
1. Siegel, R.L., Miller, K.D. & Jemal, A. Cancer statistics, 2018. CA Cancer J Clin 68, 7-30 (2018).
2. Dempke, W.C., Suto, T. & Reck, M. Targeted therapies for non-small cell lung cancer. Lung Cancer 67, 257-74 (2010).
3. Bar, J., Herbst, R.S. & Onn, A. Multitargeted inhibitors in lung cancer: New clinical data. Clin Lung Cancer 9, S92-S99 (2008).
4. Schabath, M.B. & DiGiovanni, J. Introduction to special issue: Recent advances in mechanisms, prevention and treatment of lung cancer. Mol Carcinog 54 Suppl 1, vi (2015).
5. Fairchild, A. et al. Palliative thoracic radiotherapy for lung cancer: a systematic review. J Clin Oncol 26, 4001-11 (2008).
6. Simon, G.R. & Turrisi, A. Management of small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132, 324S-339S (2007).
7. Somaiah, N. & Simon, G.R. Molecular targeted agents and biologic therapies for non-small cell lung cancer. J Thorac Oncol 5, S434-54 (2010).
8. Mizushima, N. Autophagy: process and function. Genes Dev 21, 2861-73 (2007).
9. Svenning, S. & Johansen, T. Selective autophagy. Essays Biochem 55, 79-92 (2013).
10. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 26, 6-16 (2016).
11. Birgisdottir, A.B., Lamark, T. & Johansen, T. The LIR motif - crucial for selective autophagy. J Cell Sci 126, 3237-47 (2013).
12. Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev 25, 1999-2010 (2011).
13. Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296 (2014).
14. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-45 (2007).
15. Kirkin, V., McEwan, D.G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol Cell 34, 259-69 (2009).
16. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-14 (2005).
17. Moscat, J., Diaz-Meco, M.T. & Wooten, M.W. Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32, 95-100 (2007).
18. Mancias, J.D. & Kimmelman, A.C. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol 428, 1659-80 (2016).
19. Wilde, L., Tanson, K., Curry, J. & Martinez-Outschoorn, U. Autophagy in cancer: a complex relationship. Biochem J 475, 1939-1954 (2018).
20. Ravanan, P., Srikumar, I.F. & Talwar, P. Autophagy: The spotlight for cellular stress responses. Life Sci 188, 53-67 (2017).
21. Qu, X. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-1820 (2003).
22. Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282, 18573-83 (2007).
23. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25, 795-800 (2011).
24. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208, 455-67 (2011).
25. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 25, 717-29 (2011).
26. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4, 905-13 (2014).
27. van Dam, T.J., Bos, J.L. & Snel, B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2, 4-16 (2011).
28. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev Biol 265, 23-32 (2004).
29. Ridley, A.J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16, 522-9 (2006).
30. Ridley, A.J. Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS Lett 498, 168-71 (2001).
31. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC zeta. Cell 106, 489-498 (2001).
32. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62 (1995).
33. Pertz, O., Hodgson, L., Klemke, R.L. & Hahn, K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069-72 (2006).
34. Nam, H.Y., Han, M.W., Chang, H.W., Kim, S.Y. & Kim, S.W. Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy 9, 1631-1632 (2013).
35. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell 166, 288-298 (2016).
36. Sarkar, S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41, 1103-30 (2013).
37. Cook, K.L. et al. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin Cancer Res 20, 3222-32 (2014).
38. Pellegrini, P. et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10, 562-71 (2014).
39. Wang, Y. et al. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin J Cancer 30, 690-700 (2011).
40. Sasaki, K. et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10, 370 (2010).
41. Milano, V., Piao, Y., LaFortune, T. & de Groot, J. Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma. Mol Cancer Ther 8, 394-406 (2009).
42. Degtyarev, M. et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183, 101-16 (2008).
43. Meng, L.H. & Zheng, X.F. Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin 36, 1163-9 (2015).
44. Li, Y. et al. Rapamycin-induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition. Thorac Cancer 7, 379-86 (2016).
45. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-23 (2013).
46. Barrangou, R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32, 36-41 (2015).
47. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 (2007).
48. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11, 181-90 (2010).
49. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-6 (2013).
50. Komor, A.C., Badran, A.H. & Liu, D.R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 168, 20-36 (2017).
51. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-82 (2011).
52. Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-55 (2014).
53. Chu, V.T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33, 543-8 (2015).
54. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229-57 (2008).
55. Wu, H.Y. & Cao, C.Y. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Brief Funct Genomics (2018).
56. Cui, Z., Renfu, Q. & Jinfu, W. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet (2018).
57. Hirsch, F.R., Varella-Garcia, M. & Cappuzzo, F. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 28 Suppl 1, S32-7 (2009).
58. Sequist, L.V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3, 75ra26 (2011).
59. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2, e73 (2005).
60. Zhukarev, V., Ashton, F., Sanger, J.M., Sanger, J.W. & Shuman, H. Organization and Structure of Actin Filament Bundles in Listeria-Infected Cells. Cell Motil Cytoskeleton 30, 229-246 (1995).
61. Pagotto, A. et al. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis 8, e2943 (2017).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top