|
1. Siegel, R.L., Miller, K.D. & Jemal, A. Cancer statistics, 2018. CA Cancer J Clin 68, 7-30 (2018). 2. Dempke, W.C., Suto, T. & Reck, M. Targeted therapies for non-small cell lung cancer. Lung Cancer 67, 257-74 (2010). 3. Bar, J., Herbst, R.S. & Onn, A. Multitargeted inhibitors in lung cancer: New clinical data. Clin Lung Cancer 9, S92-S99 (2008). 4. Schabath, M.B. & DiGiovanni, J. Introduction to special issue: Recent advances in mechanisms, prevention and treatment of lung cancer. Mol Carcinog 54 Suppl 1, vi (2015). 5. Fairchild, A. et al. Palliative thoracic radiotherapy for lung cancer: a systematic review. J Clin Oncol 26, 4001-11 (2008). 6. Simon, G.R. & Turrisi, A. Management of small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132, 324S-339S (2007). 7. Somaiah, N. & Simon, G.R. Molecular targeted agents and biologic therapies for non-small cell lung cancer. J Thorac Oncol 5, S434-54 (2010). 8. Mizushima, N. Autophagy: process and function. Genes Dev 21, 2861-73 (2007). 9. Svenning, S. & Johansen, T. Selective autophagy. Essays Biochem 55, 79-92 (2013). 10. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 26, 6-16 (2016). 11. Birgisdottir, A.B., Lamark, T. & Johansen, T. The LIR motif - crucial for selective autophagy. J Cell Sci 126, 3237-47 (2013). 12. Kimmelman, A.C. The dynamic nature of autophagy in cancer. Genes Dev 25, 1999-2010 (2011). 13. Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296 (2014). 14. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-45 (2007). 15. Kirkin, V., McEwan, D.G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol Cell 34, 259-69 (2009). 16. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-14 (2005). 17. Moscat, J., Diaz-Meco, M.T. & Wooten, M.W. Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32, 95-100 (2007). 18. Mancias, J.D. & Kimmelman, A.C. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol 428, 1659-80 (2016). 19. Wilde, L., Tanson, K., Curry, J. & Martinez-Outschoorn, U. Autophagy in cancer: a complex relationship. Biochem J 475, 1939-1954 (2018). 20. Ravanan, P., Srikumar, I.F. & Talwar, P. Autophagy: The spotlight for cellular stress responses. Life Sci 188, 53-67 (2017). 21. Qu, X. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-1820 (2003). 22. Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282, 18573-83 (2007). 23. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25, 795-800 (2011). 24. Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med 208, 455-67 (2011). 25. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 25, 717-29 (2011). 26. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 4, 905-13 (2014). 27. van Dam, T.J., Bos, J.L. & Snel, B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases 2, 4-16 (2011). 28. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev Biol 265, 23-32 (2004). 29. Ridley, A.J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16, 522-9 (2006). 30. Ridley, A.J. Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS Lett 498, 168-71 (2001). 31. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKC zeta. Cell 106, 489-498 (2001). 32. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62 (1995). 33. Pertz, O., Hodgson, L., Klemke, R.L. & Hahn, K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069-72 (2006). 34. Nam, H.Y., Han, M.W., Chang, H.W., Kim, S.Y. & Kim, S.W. Prolonged autophagy by MTOR inhibitor leads radioresistant cancer cells into senescence. Autophagy 9, 1631-1632 (2013). 35. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell 166, 288-298 (2016). 36. Sarkar, S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41, 1103-30 (2013). 37. Cook, K.L. et al. Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast cancer. Clin Cancer Res 20, 3222-32 (2014). 38. Pellegrini, P. et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10, 562-71 (2014). 39. Wang, Y. et al. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. Chin J Cancer 30, 690-700 (2011). 40. Sasaki, K. et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer 10, 370 (2010). 41. Milano, V., Piao, Y., LaFortune, T. & de Groot, J. Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma. Mol Cancer Ther 8, 394-406 (2009). 42. Degtyarev, M. et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183, 101-16 (2008). 43. Meng, L.H. & Zheng, X.F. Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin 36, 1163-9 (2015). 44. Li, Y. et al. Rapamycin-induced autophagy sensitizes A549 cells to radiation associated with DNA damage repair inhibition. Thorac Cancer 7, 379-86 (2016). 45. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-23 (2013). 46. Barrangou, R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32, 36-41 (2015). 47. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 (2007). 48. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11, 181-90 (2010). 49. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-6 (2013). 50. Komor, A.C., Badran, A.H. & Liu, D.R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 168, 20-36 (2017). 51. Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-82 (2011). 52. Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-55 (2014). 53. Chu, V.T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33, 543-8 (2015). 54. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229-57 (2008). 55. Wu, H.Y. & Cao, C.Y. The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Brief Funct Genomics (2018). 56. Cui, Z., Renfu, Q. & Jinfu, W. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet (2018). 57. Hirsch, F.R., Varella-Garcia, M. & Cappuzzo, F. Predictive value of EGFR and HER2 overexpression in advanced non-small-cell lung cancer. Oncogene 28 Suppl 1, S32-7 (2009). 58. Sequist, L.V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3, 75ra26 (2011). 59. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2, e73 (2005). 60. Zhukarev, V., Ashton, F., Sanger, J.M., Sanger, J.W. & Shuman, H. Organization and Structure of Actin Filament Bundles in Listeria-Infected Cells. Cell Motil Cytoskeleton 30, 229-246 (1995). 61. Pagotto, A. et al. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis 8, e2943 (2017).
|