跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳孝觀
研究生(外文):Hsiao-Kuan Wu
論文名稱:以人機電和諧設計圖促進精準復健之創新開發
論文名稱(外文):The “Anthro-Mechatronic Harmonious Design Canvas” Enhances Innovation in Precision Rehabilitation
指導教授:游忠煌
指導教授(外文):Chung-Huang Yu
學位類別:博士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:120
中文關鍵詞:精準醫療復健機電整合人機電和諧設計圖巴金森氏症視覺提醒設計策略關節附屬動作測試前方自動跟隨機器人
外文關鍵詞:precision medicinerehabilitationmechatronicsAnthro-Mechatronic Harmonious Design CanvasParkinson’s diseasevisual cuesdesign strategyjoint accessory motion testfront-accompanyingrobot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
精準醫療(Precision Medicine)是以個別化醫療為基礎,整合工程科技改善傳統醫療,復健醫療也逐漸朝向此方向發展,本研究提出人機電和諧設計圖 (Anthro-Mechatronic Harmonious Design Canvas),依據此模型觀察臨床需求,整合機電技術之方式,找尋精準復健之可能發展方式。本論文以此人機電和諧設計圖開發三種復健領域的創新機電系統,作為促進精準化復健、評估與輔助系統的範例
第一,個別化調整之巴金森氏症患者視覺提醒裝置之復建系統開發,研究據此裝置證實個別化調整對於巴金森氏症患者能誘發出更好的步態表現,且每個患者的適用參數都不同,透過簡易調整視覺提醒方式能可提供臨床上更方便的步態訓練時運用。
第二,手持式關節附屬動作量測儀器之評估系統開發,實現客觀化量臨床上常用之關節附屬動作評估,以輕便手持系統增加臨床之可行性,資料可透過無線傳輸透過手機上傳至雲端儲存,連續紀錄患者之關節附屬動作之變化,可作為後續大數據分析之運用。
第三,前方自動跟隨行走輔助系統之開發,可於使用者周圍自動跟隨,以使用者為中心,前後左右旋轉三個自由度移動,平時可協助載重物,可提供必要時穩定支撐、預防跌倒,此平台未來還可作為個人化醫療平台,載運較大之可攜式精準醫療設備、並提供運動量分析、步態分析…等功能。
本論文提出之人機電和諧設計圖可幫助醫學與工程領域蒐集資訊,加速設計出和諧的人機整合系統,發展出創新精準化復健、評估及輔具系統
Precision medicine is based on personalized medicine and integrates engineering technology to improve traditional medicine in four ways: personalization, quantification, continuity, and prevention. Rehabilitation medicine is gradually developing in this direction. This thesis suggests a model, “Anthro-Mechatronic Harmonious Design Canvas” (AMHD canvas), to develop mechatronic assistive devices with Innovative design methods which contained observing clinical needs and integrating electromechanical technology. This dissertation demonstrated three innovative mechatronic systems in the field of precision rehabilitation.
Firstly, an individualized and adjustable visual cue device was developed to improve the gait performance of patients with Parkinson's disease. The laser lines projected from the wheeled walker could relieve the limits of space and increase the mobility of the gait training system. The newly developed ground-fixed projection of visual cues provided an alternative visual perception that mimics the experience of walking on transverse lines stuck on the ground. Furthermore, personalized parameters of visual cues matching subjects’ gait ability are critical to achieving the largest improvement of stride length for individuals based on our proposed device.
Secondly, a convenient objective reliable clinical assessment device for joint accessory motion test (JAMT) was developed. The aim of this study was to develop a JAMT device which is (a) equipped with multiple probes to truly measure the displacements in the joint, (b) manual handheld to allow evaluators to feel the joint response and to exert the force to the desired magnitude and (c) accounted for errors caused by unsteady hands to provide reliable and consistent results.
Thirdly, for aging prevention, the automatic front-accompanying robot was developed for assisting the user in carrying heavy objects and providing stable support when necessary. This aid was user-oriented design and with the three degrees of freedom mobility. In the future, this robot can also be used as a personalized medical platform to carry larger portable medical equipment and provide functions such as gait analysis.
In conclusion, the AMHD canvas, developed in this dissertation, helps gather information and analyze problems from both engineering and medical domains. The AMHD canvas could also inspire the innovative ideas and speed up the harmonious medical and engineering integration to develop the precision rehabilitative, assessing and assistive technology systems.
Acknowledgments II
Chinese Abstract III
English Abstract IV
Contents VI
List of Figures IX
List of Tables XIV
Chapter 1. Introduction 1
Chapter 2. Development of rehabilitative technology: the novel instrumented walker for individualized visual cue setting for gait training in patients with Parkinson’s disease 10
2.1 Introduction 10
2.2 Materials and Methods 16
2.2.1 Instrumentation 16
2.2.2 Experiment 22
2.3 Results 26
2.4 Discussion 30
2.4.1 Effect of instrument design 30
2.4.2 Effect of usage instructions 33
2.4.3 Effect of visual cue settings 35
2.4.4 Limitations and Future Work 37
2.5 Conclusions 38
Chapter 3. Development of assessing technology: the objective portable measurement device for spinal joint accessory motion test 39
3.1 Introduction 39
3.2 Material and Methods 45
3.2.1 System Design 45
3.2.2 Calibration, parameter identification, and data processing 51
3.3 Methods of System Verification 55
3.3.1 Testing Rig & Computer Modelling 55
3.3.2 Single spring test 57
3.3.3 Spinal simulation test 58
3.4 Result of System Verification 58
3.5 Discussion of System Verification 60
3.5.1 Instrument design 60
3.5.2 Single spring test 60
3.5.3 Spinal simulator test 61
3.6 Method of Clinical Test 63
3.6.1 Procedure and statistic methods 63
3.6.2 Finding force-displacement characteristics 64
3.7 Result of Clinical Test 66
3.8 Discussion of Clinical Test 69
3.8.1 Force-Displacement Characteristic 69
3.8.2 Measuring error caused by manual operation 70
3.9 Limitation and future work 73
Chapter 4. Development of assistive technology: the front accompanying robot for assisting the older person to go out 74
4.1 Introduction 74
4.2 Method 79
4.2.1 Design concept and user analysis 79
4.2.2 Firmware development and control Algorithm 82
4.2.3 System development 87
4.2.4 System programming 94
4.3 Methods of System Verification 96
4.3.1 Testing method 96
4.3.2 Testing environment 97
4.4 Result of System Verification 98
4.4.1 Single direction 98
4.4.2 Multiple tasks 106
4.5 Conclusion and future application 110
Chapter 5. Conclusion 111
Reference 113
Abbreviations 120
Alexander, G. and N. Staggers (2009). "A systematic review of the designs of clinical technology: findings and recommendations for future research." ANS. Advances in nursing science 32(3): 252-279.
Azulay, J. P., S. Mesure, B. Amblard, O. Blin, I. Sangla and J. Pouget (1999). "Visual control of locomotion in Parkinson's disease." Brain 122(1): 111-120.
B. Pietzsch, J., L. Shluzas, M.-E. Paté-Cornell, P. G. Yock and J. H. Linehan (2009). Stage-Gate Process for the Development of Medical Devices.
Behrman, A. L., P. Teitelbaum and J. H. Cauraugh (1998). "Verbal instructional sets to normalise the temporal and spatial gait variables in Parkinson’s disease." J Neurol Neurosurg Psychiatry 65(4): 580-582.
Bella, S. D., C. E. Benoit, N. Farrugia, M. Schwartze and S. A. Kotz (2015). "Effects of musically cued gait training in Parkinson's disease: beyond a motor benefit." Ann N Y Acad Sci 1337: 77-85.
Benoit, C.-E., S. Dalla Bella, N. Farrugia, H. Obrig, S. Mainka and S. A. Kotz (2014). "Musically Cued Gait-Training Improves Both Perceptual and Motor Timing in Parkinson’s Disease." Frontiers in Human Neuroscience 8(494).
Binkley, J., P. W. Stratford and C. Gill (1995). "Interrater Reliability of Lumbar Accessory Motion Mobility Testing." Physical Therapy 75(9): 786-792.
Chapuis, S., L. Ouchchane, O. Metz, L. Gerbaud and F. Durif (2005). "Impact of the motor complications of Parkinson's disease on the quality of life." Mov Disord 20(2): 224-230.
Cochrane, C. G. (1987). "Joint Mobilization Principles Considerations for Use in the Child with Central Nervous System Dysfunction." Physical therapy 67(7): 1105-1109.
Cook, A. M., S. M. Hussey and J. M. Polgar (2008). Cook & Hussey's assistive technologies: principles and practice. St. Louis, Mo., Mosby Elsevier.
Crizzle, A. M. and I. J. Newhouse (2006). "Is Physical Exercise Beneficial for Persons with Parkinson's Disease?" Clinical Journal of Sport Medicine 16(5): 422-425.
Edmondston, S. J., G. T. Allison, C. D. Gregg, S. M. Purden, G. R. Svansson and A. E. Watson (1998). "Effect of position on the posteroanterior stiffness of the lumbar spine." Manual Therapy 3(1): 21-26.
Ellis, R. J., Y. S. Ng, S. Zhu, D. M. Tan, B. Anderson, G. Schlaug and Y. Wang (2015). "A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson’s Disease." PLOS ONE 10(10): e0141694.
Espay, A. J., Y. Baram, A. K. Dwivedi, R. Shukla, M. Gartner, L. Gaines, A. P. Duker and F. J. Revilla (2010). "At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease." J Rehabil Res Dev 47(6): 573-581.
Ferrarin, M., M. Brambilla, L. Garavello, A. Di Candia, A. Pedotti and M. Rabuffetti (2004). "Microprocessor-controlled optical stimulating device to improve the gait of patients with Parkinson's disease." Med Biol Eng Comput 42: 328-332.
Ferraye, M. U., V. Fraix, P. Pollak, B. R. Bloem and B. Debû (2016). "The laser-shoe: A new form of continuous ambulatory cueing for patients with Parkinson's disease." Parkinsonism & Related Disorders 29: 127-128.
Fok, P., M. Farrell, J. McMeeken and Y. L. Kuo (2011). "The effects of verbal instructions on gait in people with Parkinson's disease: a systematic review of randomized and non-randomized trials." Clin Rehabil 25(5): 396-407.
Food and U. S. Drug Administration (2014). Paving the way for personalized medicine: FDA's role in a new era of medical product development: 1-74.
Fritz, J. M., J. M. Whitman and J. D. Childs "Lumbar Spine Segmental Mobility Assessment: An Examination of Validity for Determining Intervention Strategies in Patients With Low Back Pain." Archives of Physical Medicine and Rehabilitation 86(9): 1745-1752.
Ginis, P., A. Nieuwboer, M. Dorfman, A. Ferrari, E. Gazit, C. G. Canning, L. Rocchi, L. Chiari, J. M. Hausdorff and A. Mirelman (2016). "Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson's disease: A pilot randomized controlled trial." Parkinsonism Relat Disord 22: 28-34.
Goetz, C. G., W. Poewe, O. Rascol and C. Sampaio (2005). "Evidence-based medical review update: pharmacological and surgical treatments of Parkinson's disease: 2001 to 2004." Mov Disord 20(5): 523-539.
Gracely, R. H., P. McGrath and R. Dubner (1978). "Ratio scales of sensory and affective verbal pain descriptors." Pain 5(1): 5-18.
Hausdorff, J. M. (2009). "Gait dynamics in Parkinson's disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling." Chaos 19(2): 026113.
Hestœk, L. and C. Leboeuf-Yde (2000). "Are chiropractic tests for the lumbo-pelvic spine reliable and valid? A systematic critical literature review." Journal of Manipulative and Physiological Therapeutics 23(4): 258-275.
Jankovic, J. (2008). "Parkinson's disease: clinical features and diagnosis." J Neurol Neurosurg Psychiatry 79(4): 368-376.
Janssen, S., B. Bolte, J. Nonnekes, M. Bittner, B. R. Bloem, T. Heida, Y. Zhao and R. J. A. van Wezel (2017). "Usability of Three-dimensional Augmented Visual Cues Delivered by Smart Glasses on (Freezing of) Gait in Parkinson's Disease." Front Neurol 8: 279.
Jiang, Y. and K. E. Norman (2006). "Effects of visual and auditory cues on gait initiation in people with Parkinson's disease." Clin Rehabil 20(1): 36-45.
Kawchuk, G. N. and O. R. Fauvel (2001). "Sources of variation in spinal indentation testing: Indentation site relocation, intraabdominal pressure, subject movement, muscular response, and stiffness estimation." Journal of Manipulative and Physiological Therapeutics 24(2): 84-91.
Kawchuk, G. N., T. R. Liddle, O. R. Fauvel and C. Johnston "The Accuracy of Ultrasonic Indentation in Detecting Simulated Bone Displacement: A Comparison of Three Techniques." Journal of Manipulative & Physiological Therapeutics 29(2): 126-133.
Kawchuk, G. N., T. R. Liddle, O. R. Fauvel and C. Johnston (2006). "The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques." J Manipulative Physiol Ther 29(2): 126-133.
Kegelmeyer, D. A., S. Parthasarathy, S. K. Kostyk, S. E. White and A. D. Kloos (2013). "Assistive devices alter gait patterns in Parkinson disease: advantages of the four-wheeled walker." Gait Posture 38(1): 20-24.
Keus, S. H., B. R. Bloem, E. J. Hendriks, A. B. Bredero-Cohen, M. Munneke and G. Practice Recommendations Development (2007). "Evidence-based analysis of physical therapy in Parkinson's disease with recommendations for practice and research." Mov Disord 22(4): 451-460.
Knutsson, E. and A. Martensson (1971). "Quantitative effects of L-dopa on different types of movements and muscle tone in Parkinsonian patients." Scand J Rehabil Med 3(3): 121-130.
Kompoliti, K., C. G. Goetz, S. Leurgans, M. Morrissey and I. M. Siegel (2000). "“On” freezing in Parkinson's disease: resistance to visual cue walking devices." Movement disorders 15(2): 309-312.
Kumar, S. (2011). "Spinal stiffness in asymptomatic subjects." Journal of Electromyography and Kinesiology 21(5): 762-766.
Kumar, S. and S. Stoll (2011). "Device, protocol and measurement of regional spinal stiffness." Journal of Electromyography and Kinesiology 21(3): 458-465.
Kwakkel, G., C. J. de Goede and E. E. van Wegen (2007). "Impact of physical therapy for Parkinson's disease: a critical review of the literature." Parkinsonism Relat Disord 13 Suppl 3: S478-487.
Latimer, J., M. M. Goodsell, M. Lee, C. G. Maher, B. N. Wilkinson and C. C. Moran (1996). "Evaluation of a new device for measuring responses to posteroanterior forces in a patient population, part 1: reliability testing." Physical Therapy 76(2): 158-165.
Latimer, J., M. Lee, M. Goodsell, C. Maher, B. Wilkinson and R. Adams (1996). "Instrumented measurement of spinal stiffness." Manual Therapy 1(4): 204-209.
Lebold, C. A. and Q. J. Almeida (2011). "An evaluation of mechanisms underlying the influence of step cues on gait in Parkinson’s disease." J. Clin. Neurosci 18(6): 798-802.
Lebold, C. A. and Q. J. Almeida (2011). "An evaluation of mechanisms underlying the influence of step cues on gait in Parkinson’s disease." Journal of Clinical Neuroscience 18(6): 798-802.
Lee, R. and J. Evans (1992). "Load-displacement-time characteristics of the spine under posteroanterior mobilisation." Aust J Physiother 38(3): 115-119.
Lee, R. and J. Evans (1997). "An in vivo study of the intervertebral movements produced by posteroanterior mobilization." Clinical Biomechanics 12(6): 400-408.
Lee, R. Y. W., A. H. McGregor, A. M. J. Bull and P. Wragg (2005). "Dynamic response of the cervical spine to posteroanterior mobilisation." Clinical Biomechanics 20(2): 228-231.
Lewis, G. N., W. D. Byblow and S. E. Walt (2000). "Stride length regulation in Parkinson's disease: the use of extrinsic, visual cues." Brain 123(10): 2077-2090.
Lim, I., E. van Wegen, C. de Goede, M. Deutekom, A. Nieuwboer, A. Willems, D. Jones, L. Rochester and G. Kwakkel (2005). "Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review." Clin Rehabil 19(7): 695-713.
Limousin, P., P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann and A. L. Benabid (1998). "Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease." N Engl J Med 339(16): 1105-1111.
Maitland, G. D. (2013). Vertebral manipulation, Butterworth-Heinemann.
Moore, O., C. Peretz and N. Giladi (2007). "Freezing of gait affects quality of life of peoples with Parkinson's disease beyond its relationships with mobility and gait." Mov Disord 22(15): 2192-2195.
Moroz, A., S. R. Edgley, H. L. Lew, J. Chae, L. A. Lombard, C. C. Reddy and K. M. Robinson (2009). "Rehabilitation interventions in Parkinson disease." Pm r 1(3 Suppl): S42-48; quiz S49-50.
Morris, M. E., R. Iansek, T. A. Matyas and J. J. Summers (1994). "The pathogenesis of gait hypokinesia in Parkinson's disease." Brain 117 ( Pt 5)(5): 1169-1181.
Morris, M. E., R. Iansek, T. A. Matyas and J. J. Summers (1996). "Stride length regulation in Parkinson's disease. Normalization strategies and underlying mechanisms." Brain 119 ( Pt 2)(2): 551-568.
Morris, M. E., J. McGinley, F. Huxham, J. Collier and R. Iansek (1999). "Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson's disease." Human Movement Science 18(2-3): 461-483.
Muro-de-la-Herran, A., B. Garcia-Zapirain and A. Mendez-Zorrilla (2014). "Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications." Sensors (Basel, Switzerland) 14(2): 3362-3394.
Olanow, C. W. and W. G. Tatton (1999). "Etiology and pathogenesis of Parkinson's disease." Annu Rev Neurosci 22(1): 123-144.
Osterwalder, A., Y. Pigneur, G. Bernarda and A. Smith (2014). Value proposition design: How to create products and services customers want, John Wiley & Sons.
Owens Jr, E. F., J. W. DeVocht, D. G. Wilder, M. R. Gudavalli and W. C. Meeker (2007). "The reliability of a posterior-to-anterior spinal stiffness measuring system in a population of patients with low back pain." Journal of manipulative and physiological therapeutics 30(2): 116-123.
Patla, A. E. (1998). "How Is Human Gait Controlled by Vision." Ecological Psychology 10(3-4): 287-302.
Redmill, F. (1997). Human factors in safety critical systems. Oxford, Butterworth Heinemann.
Richards, C., F. Malouin, P. Bedard and M. Cioni (1992). "Changes induced by L-Dopa and sensory cues on the gait of Parkinsonians patients."
Riddle, D. L. (1992). "Measurement of Accessory Motion: Critical Issues and Related Concepts." Physical Therapy 72(12): 865-874.
Rubinstein, T. C., N. Giladi and J. M. Hausdorff (2002). "The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson's disease." Mov Disord 17(6): 1148-1160.
Schafer, R. W. (2011). "What is a Savitzky-Golay filter?[lecture notes]." IEEE Signal processing magazine 28(4): 111-117.
Seffinger, M. A., W. I. Najm, S. I. Mishra, A. Adams, V. M. Dickerson, L. S. Murphy and S. Reinsch (2004). "Reliability of Spinal Palpation for Diagnosis of Back and Neck Pain: A Systematic Review of the Literature." Spine 29(19): E413-E425.
Sidaway, B., J. Anderson, G. Danielson, L. Martin and G. Smith (2006). "Effects of long-term gait training using visual cues in an individual with Parkinson disease." Phys Ther 86(2): 186-194.
Simmonds, M. J., S. Kumar and E. Lechelt (1995). "Use of a Spinal Model to Quantify the Forces and Motion That Occur During Therapists' Tests of Spinal Motion." Physical Therapy 75(3): 212-222.
Snodgrass, S. J., D. A. Rivett and V. J. Robertson (2006). "Manual forces applied during posterior-to-anterior spinal mobilization: a review of the evidence." Journal of manipulative and physiological therapeutics 29(4): 316-329.
Snodgrass, S. J., D. A. Rivett and V. J. Robertson (2008). "Measuring the posteroanterior stiffness of the cervical spine." Manual Therapy 13(6): 520-528.
Stanton, T. R. and G. N. Kawchuk (2009). "Reliability of assisted indentation in measuring lumbar spinal stiffness." Manual Therapy 14(2): 197-205.
Stochkendahl, M. J., H. W. Christensen, J. Hartvigsen, W. Vach, M. Haas, L. Hestbaek, A. Adams and G. Bronfort (2006). "Manual Examination of the Spine: A Systematic Critical Literature Review of Reproducibility." Journal of Manipulative and Physiological Therapeutics 29(6): 475-485.e410.
Suteerawattananon, M., G. S. Morris, B. R. Etnyre, J. Jankovic and E. J. Protas (2004). "Effects of visual and auditory cues on gait in individuals with Parkinson's disease." J Neurol Sci 219(1-2): 63-69.
Tuttle, N., R. Barrett and L. Laakso (2008). "Relation Between Changes in Posteroanterior Stiffness and Active Range of Movement of the Cervical Spine Following Manual Therapy Treatment." Spine 33(19): E673-E679.
van Trijffel, E., Q. Anderegg, P. M. M. Bossuyt and C. Lucas (2005). "Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: A systematic review." Manual Therapy 10(4): 256-269.
van Wegen, E., I. Lim, C. de Goede, A. Nieuwboer, A. Willems, D. Jones, L. Rochester, V. Hetherington, H. Berendse, J. Zijlmans, E. Wolters and G. Kwakkel (2006). "The effects of visual rhythms and optic flow on stride patterns of patients with Parkinson's disease." Parkinsonism Relat Disord 12(1): 21-27.
Vitorio, R., E. Lirani-Silva, F. Pieruccini-Faria, R. Moraes, L. T. Gobbi and Q. J. Almeida (2014). "Visual cues and gait improvement in Parkinson's disease: which piece of information is really important?" Neuroscience 277: 273-280.
Weghorst, S. and T. Kaminsky (2003). "Efficacy of the EVS Parkinson’s disease akinesia-aid in first-time users." Seattle (WA): Human Interface Technology Laboratory.
Williams, P. L., R. Warwick, M. Dyson and L. Bannister (1989). "Gray's anatomy 37th ed." Edinburgh, Scotland: Churchill Livingstone: 1356-1394.
Wu, H. K., H. R. Chen and C. H. Yu (2010). Development of posterior walker with adjustable visual cues to improve gait performance for patients with Parkinson's disease. The 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊