跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 11:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾嘉祥
研究生(外文):Chia-HsiangTseng
論文名稱:應用Laplace Adomian分解法於非線性樑之振動與大撓度問題研究
論文名稱(外文):Apply Laplace Adomian Decomposition Method to Vibration and Large Deflection Analysis of Nonlinear Beam
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Cha`o-Kuang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:110
中文關鍵詞:Laplace Adomian分解法自由振動分析非線性樑大撓度變形
外文關鍵詞:Laplace Adomian decomposition method (LADM)free vibration analysisnonlinear beamlarge deflection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為應用近代數值方法,Laplace Adomian分解法(LADM)來求解非線性樑之自由振動與大撓度變形的問題,找出不同情況下對樑之振動頻率或大撓度變形之影響。第一部分應用LADM將Euler-Bernoulli樑之統御方程式轉換成迭代方程,利用遞迴關係式得到近似解析解,接著對近似解進行簡單代數計算,求出模型的自然頻率與振動模態。透過改變模型的參數來探討其對動態系統之自然頻率的影響,參數包含幾何形狀、移動及旋轉彈簧模數、端點質塊重量、偏心距離及軸向力等。第二部分則利用LADM來探討Euler-Bernoulli樑在端點受不同大小的外力及彎矩的作用下,樑之大撓度變形情形。
研究結果得知,自然頻率隨會著移動彈簧模數、旋轉彈簧模數、軸向張力強度的增加而提升;當幾何差異越明顯時,其各項自然頻率會越接近。考慮大撓度變形的情況下,彎矩的作用相對於力的作用更能對樑產生形變,且其變形是越明顯易見的。本文中所得之計算結果,亦與相關文獻或解析結果相吻合,故LADM是一種精確又簡明的數值方法。
In this study, the Laplace Adomian decomposition method (LADM) was used to analyze free vibration of a nonlinear beam and large deflection of a cantilever beam. The relationship between structure parameters and natural frequencies or deflection was also figured out.
In the first section, the characteristic/eigenvalue equation and mode shape functions of a general beam were analytically derived by LADM. After that, effects of different physical parameters including geometry formula, translational or rotational spring constant, magnitude of axial tensile force, and the eccentricity of the tip mass on natural frequencies were investigated. In the second part, the governing equation of the large deflection was carried out with Euler–Bernoulli moment–curvature relationship. Next, the deflection under non-following end force and end moment was probed with LADM through this part.
The results of this study indicated that natural frequencies of the beam would increase with higher translational or rotational spring constant and magnitude of axial tensile force. On the other hand, the first natural frequency would decrease, and the other frequencies would increase when the eccentricity of the tip mass was larger. As for the structure geometry, the more complex it was, the closer the natural frequencies would they be. For large deflection cases, the results revealed that the influence of end moment was more obvious than the influence of end force. Further, end moment would cause obvious deflection near the tip. The end force, by contrast, would cause the deflection through the whole beam.
摘要 I
Extended Abstract II
致謝 XI
目錄 XII
表目錄 XV
圖目錄 XVII
符號說明 XIX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-2-1 樑之振動問題研究 3
1-2-2 Adomian分解法 4
1-3 本文架構 6
第二章 Laplace Adomian分解法 (LADM) 7
2-1 Adomian分解法 (ADM) 8
2-2 Adomian多項式 (Adomian polynomial) 10
2-2-1 非線性多項式 (Nonlinear Polynomials) 11
2-2-2 三角函數 (Trigonometric) 13
2-3 修正Adomian分解法 (MADM) 16
2-3-1 修正ADM (一) 16
2-3-2 修正ADM (二) 21
2-4 Laplace Adomian分解法 (LADM) 25
2-4-1 運算法則 25
2-4-2 LADM在特徵值問題之應用 32
2-4-3 Padé近似法 39
2-4-4 結論 41
第三章 非均勻Euler-Bernoulli樑之自由振動分析 45
3-1 模型建立 45
3-2 均勻Euler-Bernoulli樑 49
3-2-1 統御方程式與邊界條件 49
3-2-2 LADM求解均勻樑之自然頻率 50
3-3 非均勻Euler-Bernoulli樑 65
3-4 結論 80
第四章 Euler-Bernoulli樑之大撓度變形分析 93
4-1 模型建立 93
4-2 LADM解題流程 95
4-3 數值結果與討論 97
第五章 總結與建議 102
5-1 總結 102
5-2 未來研究方向與建議 104
參考文獻 105
[1]W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering. Wiley, 1990.
[2]D. G. Fertis, Mechanical and Structural Vibrations. Wiley, 1995.
[3]A. D. Dimarogonas, Vibration for Engineers. Prentice Hall, 1996.
[4]W. Thomson, Theory of Vibration with Applications. Taylor & Francis, 1996.
[5]L. Meirovitch and R. G. Parker, Fundamentals of Vibrations, Applied Mechanics Reviews, vol. 54, no. 6, pp. B100-B101, 2001, doi: 10.1115/1.1421112.
[6]W. E. Boyce, R. C. DiPrima, and D. B. Meade, Elementary Differential Equations and Boundary Value Problems. Wiley, 2017.
[7]S. S. Rao, Mechanical Vibrations. Pearson Education, Incorporated, 2017.
[8]W. Yeih, J. T. Chen, and C. M. Chang, Applications of dual MRM for determining the natural frequencies and natural modes of an Euler-Bernoulli beam using the singular value decomposition method, (in English), Engineering Analysis with Boundary Elements, vol. 23, no. 4, pp. 339-360, Apr 1999, doi: 10.1016/S0955-7997(98)00084-8.
[9]H. K. Kim and M. S. Kim, Vibration of beams with generally restrained boundary conditions using Fourier series, (in English), Journal of Sound and Vibration, vol. 245, no. 5, pp. 771-784, Aug 30 2001, doi: 10.1006/jsvi.2001.3615.
[10]W. L. Li, Free Vibrations of Beams with General Boundary Conditions, Journal of Sound and Vibration, vol. 237, no. 4, pp. 709-725, 2000, doi: 10.1006/jsvi.2000.3150.
[11]H. H. Mabie and C. B. Rogers, Transverse Vibrations of Double‐Tapered Cantilever Beams, (in English), The Journal of the Acoustical Society of America, vol. 51, no. 5B, pp. 1771-1774, 1972, doi: 10.1121/1.1913028.
[12]P. A. A. Laura, J. L. Pombo, and E. A. Susemihl, A note on the vibrations of a clamped-free beam with a mass at the free end, Journal of Sound and Vibration, vol. 37, no. 2, pp. 161-168, 1974, doi: 10.1016/s0022-460x(74)80325-1.
[13]R. P. Goel, Transverse Vibrations of Tapered Beams, (in English), Journal of Sound and Vibration, vol. 47, no. 1, pp. 1-7, 1976, doi: 10.1016/0022-460x(76)90403-X.
[14]S. Naguleswaran, Vibration of a Vertical Cantilever with and without Axial Freedom at Clamped End, (in English), Journal of Sound and Vibration, vol. 146, no. 2, pp. 191-198, Apr 22 1991, doi: 10.1016/0022-460x(91)90758-C.
[15]S. Naguleswaran, Vibration of an Euler-Bernoulli Beam of Constant Depth and with Linearly Varying Breadth, (in English), Journal of Sound and Vibration, vol. 153, no. 3, pp. 509-522, Mar 22 1992, doi: 10.1016/0022-460x(92)90379-C.
[16]S. Naguleswaran, A Direct Solution for the Transverse Vibration of Euler-Bernoulli Wedge and Cone Beams, (in English), Journal of Sound and Vibration, vol. 172, no. 3, pp. 289-304, May 5 1994, doi: 10.1006/jsvi.1994.1176.
[17]S. Naguleswaran, Comments on “Vibration of Non-Uniform Rods and Beams, Journal of Sound and Vibration, vol. 195, no. 2, pp. 331-337, 1996, doi: 10.1006/jsvi.1996.0425.
[18]S. H. Ho and C. K. Chen, Analysis of general elastically end restrained non-uniform beams using differential transform, (in English), Applied Mathematical Modelling, vol. 22, no. 4-5, pp. 219-234, Apr-May 1998, doi: 10.1016/S0307-904x(98)10002-1.
[19]C. K. Chen and S. H. Ho, Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform, (in English), International Journal of Mechanical Sciences, vol. 41, no. 11, pp. 1339-1356, Nov 1999, doi: 10.1016/S0020-7403(98)00095-2.
[20]T. F. Ma and J. da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order, (in English), Applied Mathematics and Computation, vol. 159, no. 1, pp. 11-18, Nov 25 2004, doi: 10.1016/j.amc.2003.08.088.
[21]J. C. Hsu, H. Y. Lai, and C. K. Chen, Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method, (in English), Journal of Sound and Vibration, vol. 318, no. 4-5, pp. 965-981, Dec 23 2008, doi: 10.1016/j.jsv.2008.05.010.
[22]D. Adair and M. Jaeger, Simulation of tapered rotating beams with centrifugal stiffening using the Adomian decomposition method, (in English), Applied Mathematical Modelling, vol. 40, no. 4, pp. 3230-3241, Feb 15 2016, doi: 10.1016/j.apm.2015.09.097.
[23]I. Celik, Free vibration of non-uniform Euler-Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method, (in English), Applied Mathematical Modelling, vol. 54, pp. 268-280, Feb 2018, doi: 10.1016/j.apm.2017.09.041.
[24]A. Keshmiri, N. Wu, and Q. Wang, Free Vibration Analysis of a Nonlinearly Tapered Cone Beam by Adomian Decomposition Method, (in English), International Journal of Structural Stability and Dynamics, vol. 18, no. 7, Jul 2018, doi: 10.1142/S0219455418501018.
[25]K. E. Bisshopp and D. C. Drucker, Large Deflection of Cantilever Beams, (in English), Quarterly of Applied Mathematics, vol. 3, no. 3, pp. 272-275, 1945, doi: 10.1090/qam/13360.
[26]B. S. Shvartsman, Large deflections of a cantilever beam subjected to a follower force, (in English), Journal of Sound and Vibration, vol. 304, no. 3-5, pp. 969-973, Jul 24 2007, doi: 10.1016/j.jsv.2007.03.010.
[27]A. Banerjee, B. Bhattacharya, and A. K. Mallik, Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches, (in English), International Journal of Non-Linear Mechanics, vol. 43, no. 5, pp. 366-376, Jun 2008, doi: 10.1016/j.ijnonlinmec.2007.12.020.
[28]A. Kimiaeifar, N. Tolou, A. Barari, and J. L. Herder, Large deflection analysis of cantilever beam under end point and distributed loads, (in English), Journal of the Chinese Institute of Engineers, vol. 37, no. 4, pp. 438-445, 2014, doi: 10.1080/02533839.2013.814991.
[29]H. Tari, On the parametric large deflection study of Euler-Bernoulli cantilever beams subjected to combined tip point loading, (in English), International Journal of Non-Linear Mechanics, vol. 49, pp. 90-99, Mar 2013, doi: 10.1016/j.ijnonlinmec.2012.09.004.
[30]H. Tari, G. L. Kinzel, and D. A. Mendelsohn, Cartesian and piecewise parametric large deflection solutions of tip point loaded Euler-Bernoulli cantilever beams, (in English), International Journal of Mechanical Sciences, vol. 100, pp. 216-225, Sep 2015, doi: 10.1016/j.ijmecsci.2015.06.024.
[31]M. Khosravi and M. Jani, Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature, (in English), Int J Nonlinear Anal, vol. 9, no. 1, pp. 117-127, Sum-Fal 2018, doi: 10.22075/ijnaa.2017.11240.1549.
[32]T. Horibe and K. Mori, Large deflections of tapered cantilever beams made of axially functionally graded material, (in English), Mechanical Engineering Journal, vol. 5, no. 1, 2018, doi: 10.1299/mej.17-00268.
[33]G. Adomian, Solving Frontier Problems Modeled by Nonlinear Partial-Differential Equations, (in English), Comput Math Appl, vol. 22, no. 8, pp. 91-94, 1991, doi: 10.1016/0898-1221(91)90017-X.
[34]G. Adomian, Delayed Nonlinear Dynamical-Systems, (in English), Mathematical and Computer Modelling, vol. 22, no. 3, pp. 77-79, Aug 1995, doi: 10.1016/0895-7177(95)00121-H.
[35]Y. Cherruault, G. Saccomandi, and B. Some, New results for convergence of Adomian's method applied to integral equations, Mathematical and Computer Modelling, vol. 16, no. 2, pp. 85-93, 1992, doi: 10.1016/0895-7177(92)90009-a.
[36]Y. Cherruault and G. Adomian, Decomposition Methods : A New Proof of Convergence, (in English), Mathematical and Computer Modelling, vol. 18, no. 12, pp. 103-106, Dec 1993, doi: 10.1016/0895-7177(93)90233-O.
[37]K. Abbaoui and Y. Cherruault, Convergence of Adomian's method applied to differential equations, Comput Math Appl, vol. 28, no. 5, pp. 103-109, 1994, doi: 10.1016/0898-1221(94)00144-8.
[38]M. M. Hosseini and H. Nasabzadeh, On the convergence of Adomian decomposition method, (in English), Applied Mathematics and Computation, vol. 182, no. 1, pp. 536-543, Nov 1 2006, doi: 10.1016/j.amc.2006.04.015.
[39]A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian decomposition method for initial-value problems, Numerical Methods for Partial Differential Equasion, vol. 23, pp. 904-922, 2007, doi: 10.1002/num.20549.
[40]A. M. Wazwaz, A new algorithm for calculating adomian polynomials for nonlinear operators, (in English), Applied Mathematics and Computation, vol. 111, no. 1, pp. 53-69, May 1 2000, doi: 10.1016/S0096-3003(99)00063-6.
[41]A. M. Wazwaz and S. M. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, (in English), Applied Mathematics and Computation, vol. 122, no. 3, pp. 393-405, Aug 15 2001, doi: 10.1016/S0096-3003(00)00060-6.
[42]S. Ghosh, A. Roy, and D. Roy, An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators, (in English), Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 4-6, pp. 1133-1153, 2007, doi: 10.1016/j.cma.2006.08.010.
[43]P. V. Ramana and B. K. R. Prasad, Modified Adomian Decomposition Method for Van der Pol equations, (in English), International Journal of Non-Linear Mechanics, vol. 65, pp. 121-132, Oct 2014, doi: 10.1016/j.ijnonlinmec.2014.03.006.
[44]S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, Journal of Applied Mathematics, vol. 1, no. 4, pp. 141-155, 2001, doi: 10.1155/s1110757x01000183.
[45]P. Y. Tsai and C. K. Chen, Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method, (in English), International Journal for Numerical Methods in Biomedical Engineering, vol. 27, no. 2, pp. 262-272, Feb 2011, doi: 10.1002/cnm.1304.
[46]F. Haq, K. Shah, G. U. Rahman, and M. Shahzad, Numerical solution of fractional order smoking model via laplace Adomian decomposition method, (in English), Alexandria Engineering Journal, vol. 57, no. 2, pp. 1061-1069, Jun 2018, doi: 10.1016/j.aej.2017.02.015.
[47]S. Mahmood, R. Shah, H. Khan, and M. Arif, Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation, (in English), Symmetry-Basel, vol. 11, no. 2, p. 149, Feb 2019, doi: 10.3390/sym11020149.
[48]徐榮昌, 應用 Adomian 修正分解法於樑自由振動之研究, 成功大學機械工程學系學位論文, pp. 1-200, 2009.
[49]N. M. Auciello, Transverse Vibrations of a Linearly Tapered Cantilever Beam with Tip Mass of Rotary Inertia and Eccentricity, Journal of Sound and Vibration, vol. 194, no. 1, pp. 25-34, 1996, doi: 10.1006/jsvi.1996.0341.
[50]C. W. S. To, Vibration of a Cantilever Beam with a Base Excitation and Tip Mass, (in English), Journal of Sound and Vibration, vol. 83, no. 4, pp. 445-460, 1982, doi: 10.1016/s0022-460x(82)80100-4.
[51]T. P. Chang, Forced Vibration of a Mass-Loaded Beam with a Heavy Tip Body, (in English), Journal of Sound and Vibration, vol. 164, no. 3, pp. 471-484, Jul 8 1993, doi: 10.1006/jsvi.1993.1229.
[52]L. G. Nallim and R. O. Grossi, A general algorithm for the study of the dynamical behaviour of beams, (in English), Applied Acoustics, vol. 57, no. 4, pp. 345-356, Aug 1999, doi: 10.1016/S0003-682X(98)00055-3.
[53]S. Naguleswaran, Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force, (in English), Journal of Sound and Vibration, vol. 275, no. 1-2, pp. 47-57, Aug 6 2004, doi: 10.1016/S0022-460x(03)00741-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top