跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王文德
研究生(外文):Wen-De Wang
論文名稱:電極及反應媒子對氯酚電解氧化影響之探討
論文名稱(外文):THE INFLUENCES OF ANODE AND MEDIATOR ON THE ELECTROCHEMICAL OXIDATION OF CHOROPHENOLS
指導教授:蔣立中蔣立中引用關係
指導教授(外文):Li-Choung Chiang
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:環境工程衛生系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:87
中文關鍵詞:電極電解氧化金屬媒子氯酚化合物
外文關鍵詞:mediatorchorophenolselectrodeelectrochemical oxidation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究將電解氧化法應用於氯酚化合物之破壞處理上,並探討電極種類、金屬媒子、電流密度對氯酚化合物於單相存在及混合相存在時之去除效果影響,並以動力學之觀點探討比較之。
研究結果顯示,Ir(Ⅲ) oxide電極、Pd(Ⅱ) oxide電極、Pt(Ⅱ) oxide電極、Pt(Ⅳ) oxide電極、Ru(Ⅲ) oxide電極,五種不同特性電極中以高氧氣過電位之白金族電極Pt(Ⅱ) oxide電極及Pt(Ⅳ) oxide電極之電解效果較佳。於氯酚化合物電解反應過程中添加鈰離子與鈷離子兩種金屬媒子皆可得到更佳之反應效果,其中又以鈰離子效果較佳。電流密度之影響對Pt(Ⅱ) oxide電極及Pt(Ⅳ) oxide電極具有不同效果。Pt(Ⅱ) oxide電極之氧化率及反應速率常數皆隨著電流密度的增加而提升;Pt(Ⅳ) oxide電極之氧化率及反應速率常數皆隨著電流密度的增加而下降。本研究亦發現氯酚化合物於單相反應快者,於混合相時競爭能力強;混合相競爭力弱者易受操作條件影響。
Destruction of chorophenols (2-chorophenol, 3-chorophenol, and 4-chorophenol) was conducted in aqueous solution using electrochemical oxidation method. Study of operating parameters including anode material, mediator and current density were conducted to investigate the influences on removal efficiency and reaction kinetics of the process. Experimental results show that Pt(Ⅱ) oxide and Pt(Ⅳ) oxide anodes exhibit good performance among the five studied electrodes, including Ir(Ⅲ) oxide, Pd(Ⅱ) oxide, Pt(Ⅱ) oxide, Pt(Ⅳ) oxide, and Ru(Ⅲ) oxide. It was also found that the addition of either cerium ion or cobalt ion as a mediator can enhance the chlorophenol removal efficiency of the process. The effect of current density on chlorophenol removal efficiency was found to be varied as different anodes were used. The removal efficiency and rate constant obtained by Pt(Ⅱ) oxide electrode were increased as the current density increased, while those obtained by Pt(Ⅳ) oxide electrode were decreased as the current density increased.
誌謝……………………………………………………………………………i
中文摘要………………………………………………………………..…….ii
英文摘要………………………………………………….………………….iii
目錄.................................................……………….........................................iv
表目錄.............................................................................................................vii
圖目錄.....................................…………….....................................................ix

第一章 前言
第一節 研究動機與目的……………………………………………….1
第二節 研究內容與方法..............………………...................................2
第二章 文獻回顧
第一節 酚類化合物......................……………………….......................3
一 酚的有機特性....................………………………….................3
二 氯酚化合物之ㄧ般性質...............……………………..............4
三 氯酚化合物之用途與廢水來源....…………………….............4
四 氯酚化合物之毒性與管制標準....………………….................6
第二節 氯酚化合物之處理方式.....................……………....................9
一 生物處理程序.......................……………………......................9
二 化學氧化處理程序............………………………...................11
三 光化學處理程序.........…………………………......................15
四 電解氧化處理程序...........…………………………................17
第三節 電解氧化法..................…………………………….................20
一 電解氧化原理...........…………………………........................20
二 影響電解氧化之操作因子.....…………………………..........21
第三章 實驗設備材料與方法
第一節 實驗設備..............................……………………….................24
一 電解實驗設備.........………………………………..................24
二 水質分析設備...........………………………………................26
三 電化學分析設備………………………………………...……27
第二節 實驗材料.........……………………………………..................29
一 藥品............…………………………………………...............29
二 人工配製廢水..……………………...………………..............29
三 電極材料.......…………………….…………………...............29
第三節 實驗方法與步驟...………………………………………........30
一 電解實驗方法..……………………………………….............31
二 樣品分析方法.....……………………………………..............31
三 電化學分析方法………………………………………...……31
第四章 結果與討論
第一節 電解氧化對氯酚化合物之去除效應………………...………32
一 電極材料之影響……………………………………...………32
二 反應槽之影響………………………………...………………36
三 小結…………………………………………………...………36
第二節 添加金屬媒子對氯酚化合物之電解氧化效應………...……44
一 金屬媒子之影響…………………………...…………………44
二 電流密度之影響…………………………………...…………46
三 小結……………………………………...……………………48
第三節 添加金屬媒子對混合相氯酚化合物之電解氧化效應...……59
一 金屬媒子之影響……………………………………...………59
二 電流密度之影響……………………………………...………60
三 小結……………………………………………...……………61
四 電解氧化對單相及混合相氯酚之比較………………...……72
第五章 結論與建議
第一節 結論……………………………………………………...……81
第二節 建議………………………………………………...…………82

參考文獻…………………………………………………………….………83
張湘琪,1996,電解氧化對酚類化合物破化行為之研究,國立成功大學環境工程研究所,碩士論文。

曾淑娟,1995,電解間接氧化處理不同特性難分解有機物之研究,國立成功大學環境工程研究所,碩士論文。

楊茱芳,李季眉,2002,“純種五氯酚分解菌對氯酚類化合物去除之研究”,第二十七屆廢水處理研討會論文集。

歐陽承,胡啟和,1981,現代有機化學,大中國圖書公司。

環保法規,2002,行政院環境保護署。

謝長原,2000,電解催化氧化氯酚之研究,國立成功大學環境工程研究所,碩士論文。

Andreozzi, R., Marotta, R., 1999, “Ozonation of p-chlorophenol in aqueous solution”, Journal of Hazardous Materials, vol. B69, pp. 303-317.

Awad, Y.M., Abuzaid, N.S., 1999, “Electrochemical oxidation of phenol using graphite anodes”, Separation Science and Technology, vol. 34, pp. 699-708.

Azzam, M.O., Al-Tarazi, M., Tahboub, Y., 2000, “Anodic destruction of 4-chlorophenol solution”, Journal of Hazardous Materials, vol. B75, pp. 99-113.

Comninellis, Ch., Pulgarin, C., 1991, “Anodic oxidation of phenol for waste water treatment”, Journal of Applied Electrochemistry, vol. 21, pp. 703-708.

Comninellis, Ch., Pulgarin, C., 1993, “Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes”, Journal of Applied Electrochemistry, vol. 23, pp. 108-112.

Comninellis, Ch., Nerini, A., 1995, “Anodic oxidation of phenol in the presence of NaCl for wastewater treatment”, Journal of Applied Electrochemistry, vol. 25, pp. 23-28.

Dean John A. Lange‚s Handbook of Chemistry (15th edition), 1999, McGraw-Hill Press, U.S.A.

Esplugas, S., Giménez, J., Contreras, S., Pascual, E., Rodriguez, M., 2002, “Comparsion of different advanced oxidation processes for phenol degradation”, Water Research, vol. 36, pp. 1034-1042.

Feng, Y. J., Li, X.Y., 2002, “Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution”, Water Research, vol. 37, pp. 2399-2407.

González, G., Herrera, M.G., García, M.T., Peña., M.M., 2001, “Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors”, Biodegradation Technology, vol. 76, pp. 245-251.


Hsiao, Y.L., Nobe, K., 1993, “Hydroxylation of chlorobenzene and phenol in packed bed flow reactor with electrogenerated Fenton,s reagent”, Journal of Applied Electrochemistry, vol. 23, pp. 943-945.

Ilisz, I., Dombi, A., Mogyorósi, K., Farkas, A., Dékány, I., 2002, “Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis”, Applied Catalysis B: Environmental, vol. 39, pp. 247-256.

Iniesta, J., Michaud, P.A., Panizza, M., Cerisola, G., Aldaz, A., Comninellis, Ch., 2001, “Electrochemical oxidation of phenol at boron-doped diamond electrode”, Electrochimica Acta, vol. 46, pp. 3573-3578.

James, D.R., Wojciech, J., Nigel, J.B., 1999, “Electrochemical Oxidation of Chlorinated Phenols”, Environmental Science and Technology, vol. 33, pp. 1453-1457.

Kotz, R., Stucki, S., Carcer, B., 1991, “Electrochemical waste water treatment using high overvoltage anodes.Part I: Physical and electrochemical properties of SnO2 anodes”, Journal of Applied Electrochemistry, vol. 21, pp. 14-20.

Ku, Y., Su, W.J., Shen, Y.S., 1996, “Decomposition of phenols in aqueous solution by a UV/O3 process”, Ozone Science and Engineering, vol. 18(5), pp. 443-460.

Kwon, B.G., Lee, D.S., Kang, N., Yoon, J., 1999, “Characteristic of p-chlorophenol oxidation by Fenton’s reagent”, Water Research, vol. 33(9), pp. 2110-2118.


Lin, S.S., Chen, C.L., Chang, D.J., Chen, C.C., 2002, “Catalytic wet air oxidation of phenol by various CeO2 catalysts”, Water Research, vol. 36, pp. 3009-3014.

Lu, C.J., Lee, C.M., Huang, C.Z., 1996, “Biodegration of chlorophenols by immobilized pure-culture microorganisms”, Water Science and Technology, vol. 34, pp. 67-72.

McMurry, 1994, Fundamentals of Organic Chemistry, International Thomason Publishing Inc.

Merck Ltd. 2003 Products Catalog

Morrison, R.T., Boyd, R.N., 1992, Organic Chemistry, Prentice-Hall, Englewood Cliffs, New Jersey.

Naumczyk, J., Szpyrkowicz, L., Zilio-Grandi, F., 1996, “Electrochemical treatment of textile wastewater”, Water Science and Technology, vol. 34, pp. 17-24.

Panizza, M., Bacca, C., Cerisola, G., 2000, “Electrochemical treatment of wastewater containing polyaromatic organic pollutants”, Water Research, vol. 34, pp. 2601-2605.

Qin, J., Zhang, Q., Chuang, K.T., 2001, “Catalytic wet oxidation of p-chlorophenol over supported noble metal catalysts”, Applied Catalysis B: Environmental, vol. 29, pp. 115-123.


Rao, N.N, Dubey, A.K., Mohanty, S., Khare, P., Jain, R., Kaul, S.N., 2003, “Photocatalytic degradation of 2-chlorophenol: a study of kinetics, intermediatea and biodegradability”, Journal of Hazardous Materials, vol. B101, pp. 301-314.

Richardson, M.L., Gangolli, S., 1992, The Dictionary of Substances and their Effects, Royal Society of Chemistry, England.

Tahar, N.B., Savall, A., 1995, “Mechanistic Aspects of Phenol Electrochemical Degradation by Oxidation on a Ta/PbO2 Anode”, Journal of the Electrochemical Society, vol. 145(10), pp. 3427-3434.

Wang, K.H., Hsieh, Y.H., Chou, M.Y., Chang, C.Y., 1999, “Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution”, Applied Catalysis B: Environmental, vol. 21, pp. 1-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top