一、 中文部份:
1. 施惠萍(1999)。結構係變化的偵測與其在技術分析中的應用。國立臺灣大學經濟學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/w73gvs2. 洪志豪(1999)。技術指標KD、MACD、RSI與WMS%R之操作績效實證。國立臺灣大學國際企業學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/s72h6q3. 張凱婷(2011)。應用支撐向量迴歸及模糊規則於股價買賣點之預測。元智大學資訊管理學系碩士論文,桃園縣。 取自https://hdl.handle.net/11296/kn53tg4. 張曉青(2007)。建構智慧型線段切割法於股價買賣點之預測。元智大學工業工程與管理學系碩士論文,桃園縣。 取自https://hdl.handle.net/11296/37bpjn5. 陳育信(2004)。以移動平均線(MA)與乖離率(Bias)檢測台指選擇權單一部位投資策略之績效。逢甲大學經營管理碩士在職專班碩士論文,台中市。 取自https://hdl.handle.net/11296/z4ymx26. 陳俊豪(2017)。利用卷積神經網路深度學習方法預測外匯走勢。國立臺灣大學經濟學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/2n2fqy7. 陳鄢貞(2011)。以財務指標及技術指標建構股價預測模型-類神經網路模型之應用。國立臺北大學國際財務金融碩士在職專班碩士論文,新北市。 取自https://hdl.handle.net/11296/bsyff78. 黃美玲(2004)。整合模糊群聚分析與類神經模糊系統在股價預測應用之研究。淡江大學會計學系碩士論文,新北市。 取自https://hdl.handle.net/11296/87t4y79. 黃超彥(2010)。類神經網路及動態門檻值於股價轉折點之預測。元智大學資訊管理學系碩士論文,桃園縣。 取自https://hdl.handle.net/11296/wefqw210. 廖日昇(2012)。我的第一本圖解技術分析。台北市:我識出版社。
11. 趙永昱(2002)。技術分析交易法則在股市擇時之實證研究。國立中山大學財務管理學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/w2uva212. 鄭健毅(2010)。應用SVR支援向量迴歸模式來進行電子產業股價預測。明新科技大學工業工程與管理研究所碩士論文,新竹縣。 取自https://hdl.handle.net/11296/tbf58913. 賴志銘(2009)。叢集式類神經網路在股價轉折點預測之應用。元智大學資訊管理學系碩士論文,桃園縣。 取自https://hdl.handle.net/11296/nnw49314. 謝玉華(1999)。以拔靴複製法檢驗技術分析交易策略。銘傳大學金融研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/skjk2m15. 鍾任明(2005)。運用文字探勘於日內股價漲跌趨勢預測之研究。中原大學資訊管理研究所碩士論文,桃園縣。 取自https://hdl.handle.net/11296/u3w593 二、 英文部份:
1. Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep learning for stock prediction using numerical and textual information. Paper presented at the Computer and Information Science (ICIS), 2016 IEEE/ACIS 15th International Conference on Information Science.
2. Bao, D., & Yang, Z. (2008). Intelligent stock trading system by turning point confirming and probabilistic reasoning. Expert Systems with Applications, 34(1), 620–627.
3. Chang, P.-C., Wang, D., & Zhou, C. (2012). A novel model by evolving partially connected neural network for stock price trend forecasting. Expert Systems with Applications, 39(1), 611–620.
4. F. E. James (1968). “Monthly Moving Averages an Effective Investment Tool? ” . Journal of Financial and Quantitative Analysis, 3(03), 315–326.
5. Gidófalvi, G. (2001). Using News Articles to Predict Stock Price Movements. Retrieved from https://pdfs.semanticscholar.org/c930/99d9d9ab9f869fdf6d6bf37bc6b9cf22d76f.pdf
6. Hadavandi, E., Shavandi, H., & Ghanbari, A. (2010). Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems, 23(8), 800–808.
7. Heaton, J. B., Polson, N. G., & Witte, J. H. (2016). Deep learning in finance. arXiv preprint arXiv:1602.06561.
8. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
9. Horne, V., & G, G. (1967). The RandomWalk Theory: An Empirical Test. Financial Analysts Journal, 23(6), 87–92.
10. Kara, Y., Acar Boyacioglu, M., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Systems with Applications, 38(5), 5311–5319.
11. Lahmiri, S. (2014). Entropy-Based Technical Analysis Indicators Selection for International Stock Markets Fluctuations Prediction Using Support Vector Machines. Fluctuation and Noise Letters, 13(02), 1450013.
12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).
13. Mittermayer, M. A. (2004, January). Forecasting intraday stock price trends with text mining techniques. In 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the IEEE. doi: 10.1109/HICSS.2004.1265201
14. Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259–268.
15. Pruitt, S. W., & White, R. E. (1988). The CRISMA trading system. The Journal of Portfolio Management, 14(3), 55–58.
16. Schumaker, R. P., Zhang, Y., Huang, C.-N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458-464.
17. Wang, J., Hou, R., Wang, C., & Shen, L. (2016). Improved v -Support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Applied Soft Computing, 49, 164–178.
18. Wuthrich, B., Cho, V., Leung, S., Permunetilleke, D., Sankaran, K., & Zhang, J. (1998, October). Daily stock market forecast from textual web data. In SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218) (Vol. 3, pp. 2720-2725). IEEE.