[1]台灣氣立公司網頁 http://www.chelic.com/.
[2]上銀科技網頁 http://www.hiwin.com.tw/.
[3]SCHUNK公司網頁http://de.schunk.com/.
[4]L. L. Howell, S. P. Magleby, B. M. Olsen, and J. Wiley, Handbook of Compliant Mechanisms: Wiley Online Library, 2013.
[5]Y. Li, Topology optimization of compliant mechanisms based on the BESO method, 2014.
[6]M. Y. Wang, Mechanical and geometric advantages in compliant mechanism optimization, Frontiers of Mechanical Engineering in China, vol. 4, no. 3, pp. 229-241, 2009.
[7]SOFTROBOTICS公司網頁http://www.softroboticsinc.com/.
[8]SRT公司網頁http://www.softrobottech.com/.
[9]FESTO公司網頁http://www.festo.com/.
[10]ROBOTIQ公司網頁http://robotiq.com/.
[11]S. Perai, Methodology of compliant mechanisms and its current developments in applications: a review, American Journal of Applied Sciences, vol. 4, no. 3, pp. 160-167, 2007.
[12]M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications. 2003: Springer.
[13]A. Milojević, S. Linß, L. Zentner, N. T. Pavlović, N. D. Pavlović, T. Petrović, M. Milošević, and M. Tomić, Optimal design of adaptive compliant mechanisms with inherent actuators comparing discrete structures with continuum structures incorporating flexure hinges, in 58th Ilmenau Scientific Colloquium, 2014, vol. 3, pp. 1-12.
[14]邱震華, 拓樸與尺寸最佳化於自適性撓性夾爪機械利益最大化設計之研究, 成功大學機械工程學系碩士論文, 2016.[15]M. P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization, Archive of Applied Mechanics, vol. 69, no. 9-10, pp. 635-654, 1999.
[16]M. P. Bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering, vol. 71, no. 2, pp. 197-224, 1988.
[17]M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 1-2, pp. 227-246, 2003.
[18]G. Allaire, F. Jouve, and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of Computational Physics, vol. 194, no. 1, pp. 363-393, 2004.
[19]K. Suzuki and N. Kikuchi, A homogenization method for shape and topology optimization, Computer Methods in Applied Mechanics and Engineering, vol. 93, no. 3, pp. 291-318, 1991.
[20]O. Sigmund, A 99 line topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 21, no. 2, pp. 120-127, 2001.
[21]D. P. Bertsekas, Nonlinear optimization: Athena Scientific, Belmont, 1999.
[22]X. Huang and M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications: John Wiley & Sons, 2010.
[23]K. Svanberg, The method of moving asymptotes—a new method for structural optimization, International Journal for Numerical Methods in Engineering, vol. 24, no. 2, pp. 359-373, 1987.
[24]K. Liu and A. Tovar, An efficient 3D topology optimization code written in Matlab, Structural and Multidisciplinary Optimization, vol. 50, no. 6, pp. 1175-1196, 2014.
[25]R. Ansola, E. Veguería, A. Maturana, and J. Canales, 3D compliant mechanisms synthesis by a finite element addition procedure, Finite Elements in Analysis and Design, vol. 46, no. 9, pp. 760-769, 2010.
[26]Z. Luo, L. Tong, M. Y. Wang, and S. Wang, Shape and topology optimization of compliant mechanisms using a parameterization level set method, Journal of Computational Physics, vol. 227, no. 1, pp. 680-705, 2007.
[27]B. Zhu, X. Zhang, N. Wang, and S. Fatikow, Topology optimization of hinge-free compliant mechanisms using level set methods, Engineering Optimization, vol. 46, no. 5, pp. 580-605, 2014.
[28]Z. Luo, L. Chen, J. Yang, Y. Zhang, and K. Abdel-Malek, Compliant mechanism design using multi-objective topology optimization scheme of continuum structures, Structural and Multidisciplinary Optimization, vol. 30, no. 2, pp. 142-154, 2005.
[29]T. Buhl, C. B. Pedersen, and O. Sigmund, Stiffness design of geometrically nonlinear structures using topology optimization, Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 93-104, 2000.
[30]T. E. Bruns and D. A. Tortorelli, Topology optimization of non-linear elastic structures and compliant mechanisms, Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 26-27, pp. 3443-3459, 2001.
[31]S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol. 79, no. 1, pp. 12-49, 1988.
[32]J. A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods, Journal of Computational Physics, vol. 163, no. 2, pp. 489-528, 2000.
[33]J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science: Cambridge university press, 1999.
[34]S. Wang and M. Y. Wang, Radial basis functions and level set method for structural topology optimization, International Journal for Numerical Methods in Engineering, vol. 65, no. 12, pp. 2060-2090, 2006.
[35]Z. Luo, M. Y. Wang, S. Wang, and P. Wei, A level set‐based parameterization method for structural shape and topology optimization, International Journal for Numerical Methods in Engineering, vol. 76, no. 1, pp. 1-26, 2008.
[36]Z. Luo, L. Tong, and Z. Kang, A level set method for structural shape and topology optimization using radial basis functions, Computers & Structures, vol. 87, no. 7-8, pp. 425-434, 2009.
[37]P. Wei, Z. Li, X. Li, and M. Y. Wang, An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions, Structural and Multidisciplinary Optimization, vol. 58, no. 2, pp. 831-849, 2018.
[38]M. Burger, B. Hackl, and W. Ring, Incorporating topological derivatives into level set methods, Journal of Computational Physics, vol. 194, no. 1, pp. 344-362, 2004.
[39]L. Jackowska-Strumillo, J. Sokolowski, and A. Zochowski, The topological derivative method in shape optimization, in The 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304), 1999, vol. 1, pp. 674-679.
[40]M. Otomori, T. Yamada, K. Izui, and S. Nishiwaki, Matlab code for a level set-based topology optimization method using a reaction diffusion equation, Structural and Multidisciplinary Optimization, vol. 51, no. 5, pp. 1159-1172, 2015.
[41]Q. Xia, T. Shi, and L. Xia, Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO, Computer Methods in Applied Mechanics and Engineering, vol. 343, pp. 438-452, 2019.
[42]X. Yang, Y. Xei, G. Steven, and O. Querin, Bidirectional evolutionary method for stiffness optimization, AIAA journal, vol. 37, no. 11, pp. 1483-1488, 1999.
[43]M. Y. Wang, S. Chen, X. Wang, and Y. Mei, Design of multimaterial compliant mechanisms using level-set methods, Journal of Mechanical Design, vol. 127, no. 5, pp. 941-956, 2005.
[44]A. Krishnakumar and K. Suresh, Hinge-free compliant mechanism design via the topological level-set, Journal of Mechanical Design, vol. 137, no. 3, p. 031406, 2015.
[45]G. Allaire, Shape Optimization by the Homogenization Method: Springer Science & Business Media, 2012.
[46]D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set method, Journal of Computational Physics, vol. 155, no. 2, pp. 410-438, 1999.
[47]B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian, Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions, in ACM SIGGRAPH 2005 Courses, 2005, p. 78.
[48]X. Xie and M. Mirmehdi, Radial basis function based level set interpolation and evolution for deformable modelling, Image and Vision Computing, vol. 29, no. 2-3, pp. 167-177, 2011.
[49]O. Sigmund, On the design of compliant mechanisms using topology optimization, Journal of Structural Mechanics, vol. 25, no. 4, pp. 493-524, 1997.
[50]S. Wang, K. M. Lim, B. C. Khoo, and M. Wang, An extended level set method for shape and topology optimization, Journal of Computational Physics, vol. 221, no. 1, pp. 395-421, 2007.
[51]M. Y. Wang, The augmented lagrangian method in structural shape and topology optimization with rbf based level set method, in The 4th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, 2006.
[52]M. P. Bendsøe and O. Sigmund, Optimization of Structural Topology, Shape, and Material: Springer, 1995.
[53]D. Petković, N. D. Pavlović, S. Shamshirband, and N. Badrul Anuar, Development of a new type of passively adaptive compliant gripper, Industrial Robot: An International Journal, vol. 40, no. 6, pp. 610-623, 2013.