跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周靖芸
研究生(外文):Chou, Ching-Yun
論文名稱:雲芝發酵高粱酒糟作為石斑飼料之蛋白質替代來源
論文名稱(外文):Trametes versicolor LH1 Fermented Sorghum Distillery Residue as a Protein Source for Grouper (Epinephelus coioides)
指導教授:孫寶年孫寶年引用關係廖若川
指導教授(外文):Pan, Bonnie-SunLiu, Yeuk-Chuen
口試委員:陳翠瑤蔡政融林泓廷張君如
口試委員(外文):Chen, Tsui-YaoTsai, Cheng-JungLin, Hong-TingChang, Chun-Ju
口試日期:2019-06-06
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:石斑魚高粱酒糟雲芝菌適口性木質纖維素酶比成長率紅血球皮質醇抗低溫緊迫
外文關鍵詞:grouperTrametes versicolorSorghum distillery residuelignocellulosic enzymepalatabilityspecific growth rateanti-cold stressred blood cellcortisol
相關次數:
  • 被引用被引用:1
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究以雲芝 (Trametes versicolor LH1) 固態及液態發酵高粱酒糟 (sorghum distillery residue, SDR),降低 SDR 之粗纖維含量,將雲芝酒糟 (f-SDR)取代魚粉作為肉食性魚飼料之配料,期能提升石斑魚攝食 f-SDR 之消化率及成長率。雲芝固態及液態發酵高粱酒糟於 28oC,7 天呈對數生長、7-28 天生長趨緩,進入平穩期,又以 21-28 天 f-SDR 之植物固醇及菌絲體生物量為最高。以液態發酵之木質纖維素酶活性,包括 cellulase (3.60 U/mg protein)、laccase (7.15 U/mg protein)、LIP (110.46 U/mg protein) 及 MNP (28.35 U/mg protein) 高於固態發酵。雲芝液態發酵高粱酒糟 7 天後,粗纖維含量由 11.95% 下降至 5.11 %,低於以固態發酵 28 天 (6.17%),因此以雲芝液態發酵高粱酒糟 7 天為低纖維雲芝酒糟之最適發酵條件,其機能性成分含量為總多酚 (3093.22 g GAE/g)、總類黃酮 (122.22 g QE/g dw) 及三萜化合物 (31.18 g UAE/g dw),但仍含抗營養因子含量:植酸 (130.09 g /g dw)、單寧 (0.53 mg CAE/g dw),及胰蛋白酶抑制劑 (2.27 mg/g dw)。石斑魚攝食添加 20% 大豆粉發酵物 (soybean meal fermented products, f-SBM)、10、15、20% f-SDR 及20% SDR之飼料 8 週,以 20% SBM 及 15% f-SDR 二組之適口性、飼料利用率、比成長率皆無顯著差異 (p>0.05),故高梁酒糟經雲芝菌發酵後,可提升其適口性及成長率並可發展為機能性飼料配方,15% 為雲芝高梁酒糟取代魚粉之最適比例。石斑魚分別攝食含高粱酒糟及雲芝菌發酵酒糟之飼料 8 週後,受低溫緊迫 (15oC) 維持 4 小時,以攝食 f-SDR 飼料,石斑魚之紅血球細胞膜較為完整、不易破裂,紅血球型態多呈橢圓狀,紅血球數、血比容積、血中溶氧、氧合紅血球及血色素較攝食 SDR 及 f-SBM 高,血漿葡萄糖及皮質醇濃度則顯著 (p<0.05) 低於攝食 SDR 及 f-SBM。綜合上述,高粱酒糟經雲芝液態發酵 7 天f-SDR 飼料之適口性與 f-SBM 相當可發展為抗低溫緊迫飼料配方,供石斑魚或其他養殖肉食性魚種之用。
This study examined the possibility of Trametes versicolor LH1 to reduce the crude fiber content of sorghum distillery residue (SDR) and the feasibility of replacing 20% fish meal in carnivorous fish diet by SDR fermented with T. versicolor LH1 (f-SDR). Submerged fermentation (SmF) and solid-state fermentation (SSF) of T. versicolor LH1 on SDR at 25oC showed a logarithmic growth phase during the first 7 days, followed by slow growth. The mycelium biomass and phytosterol content were the highest after 20 days of SmF fermentation. T. versicolor LH1 had high cellulolytic enzymes activities in SmF being higher than in SSF. SDR cultivated by SmF for 7 days, the crude fiber content reduced from 11.95% to 5.11%, which was lower than that by SSF for 28 days (6.17%). The optimal fermentation to obtain low-fiber f-SDR was obtained by SmF for 7 days. The bioactive compounds including total polyphenols (3093.22 g GAE/g), total flavonoids (122.22 g QE/g dw) and triterpenoids (31.18 g UAE/g dw) were obtained. The antinutritional factors of f-SDR including, phytic acid (130.09 mg /g dw), tannin (0.53 mg CAE/g dw) and trypsin inhibitor (2.27 mg/g dw) still remained. Five dietary feeds were separated into, 20% soybean meal fermented products (f-SBM) as control, 10% f-SDR, 15% f-SDR, 20 % f-SDR and 20% SDR fed grouper (Epinephelus coioides) for 8 weeks. At the end of feeding trail, there was no significant difference in palatability indicated by consuming time, feed utilization rate and specific growth rate between those groupers fed 20% f-SBM and 15% f-SDR groups. Therefore, 15% f-SDR was the optimal ratio of f-SDR to substitute for fish meal. Cold stress was performed at 15oC for 4 h on grouper previously fed diet containing 20% f-SDR showed higher hematocrit, red blood cell counts, hemoglobin concentrations, oxyhemoglobin and higher dissolved oxygen in blood than those fed 20% SDR or 20% f-SBM. The concentration of cortisol and glucose in plasma of the 20% f-SDR group was lower than those fed f-SBM group or SDR. Overall, the crude fiber content of SDR was significantly reduced by SmF for 7 days. Moreover, the reduction of crude fiber content improved the feed palatability and the growth rate, enhance anti-cold stress tolerance of grouper. These findings indicated that low-fiber f-SDR can be developed into functional feed for grouper or other carnivorous fish species.
壹、前言 1
貳、文獻回顧 2
一、低溫環境對石斑養殖之影響 2
二、酒糟乾物 (Distillers Dried Grains with Solubles, DDGS) 3
1. 酒糟乾物之功能特性 3
2. 營養價值 4
3. 飼料消化率 5
4. 酒糟乾物作為飼料配料之限制 5
三、高粱酒糟 6
1. 一般成分及營養價值 6
2. 機能性成分 7
2.1. 多酚化合物 7
2.2. 類黃酮 7
2.3. 脂肪醇、植物固醇 8
3. 抗營養因子 9
四、雲芝 (Trametes versicolor) 10
1. 雲芝之一般成分及營養成分 11
2. 雲芝多醣之生理活性 11
3. 雲芝三萜化合物 12
4. 雲芝降解纖維素之作用 12
5. 雲芝降解木質素之作用 14
參、實驗架構 15
一、高粱酒糟以雲芝固態及液態發酵 28 天,f-SDR 之成分分析 15
二、石斑攝食 f-SDR 飼料之養殖試驗 16
三、石斑攝食 f-SDR 飼料之低溫緊迫試驗 17
肆、材料方法 18
一、材料 18
1. 高粱酒糟 18
2. 雲芝 (Trametes versicolor LH1) 18
3. 點帶石斑 (grouper, Epinephelus coioides) 18
4. 試驗飼料 19
二、方法 21
1. 雲芝菌培養 21
2. 雲芝發酵高粱酒糟 (Trametes versicolor fermented-sorghum distillery residue, f-SDR) 22
3. 雲芝菌絲體含量測定 23
4. 木質纖維素酶活性測定 25
5. 一般成分分析 29
6. 纖維素、半纖維素及木質素含量測定 30
8. 抗營養因子含量分析 33
9. 體外試驗 35
10. 石斑養殖試驗 37
11. 降溫試驗 39
伍、結果與討論 44
一、雲芝降解高粱酒糟粗纖維之最適條件 44
1. 雲芝液態預活化 44
2. 菌絲體生物量之變化 49
3. 木質纖維素酶活性之變化 54
4. 產物之粗纖維含量 56
二、雲芝酒糟之機能性成分及抗營養因子 59
1. 總多酚、總類黃酮及三萜化合物含量 59
2. 植酸、單寧及胰蛋白酶抑制劑含量 61
三、低纖雲芝酒糟作為石斑養殖飼料之應用 63
1. 石斑之食性 63
2. 體外消化率 64
3. 適口性及飼料利用率 65
4. 成長率 67
四、石斑魚攝食低纖雲芝酒糟飼料於低溫緊迫之生理變化 69
1. 受低溫緊迫後水質之變化 69
2. 血漿生化指標 70
3. 紅血球形態之變化 75
4. 血液與血球參數 77
陸、結論 79
柒、參考文獻 82
王耀徴。2012。高粱酒糟萃取物脂溶性與水溶性機能性成分之鑑定及對吳郭魚抗寒功效之比較。國立臺灣海洋大學食品科學所碩士論文。基隆,台灣。
朱瑋華。2018。雲芝發酵高粱酒糟作為肉食性魚抗寒之機能性飼料-以海鱺為模式。國立臺灣海洋大學食品科學研究所碩士論文。基隆,台灣。
行政院農委會。2013。因應氣侯變遷-海洋漁業的衝擊與調適
李欣玫。2003。高粱酒糟的抗氧化性對養殖烏魚生理特性之影響。國立臺灣海洋大學食品科學所碩士論文。基隆,台灣。
周選圍。雲芝細胞核的研究。食用菌學報。7, 55-57。
林亞璇。2018。攝食雲芝菌發酵高粱酒糟對吳郭魚抗熱緊迫之功效。國立臺灣海洋大學食品科學研究所碩士論文。基隆,台灣。
林宜萱。2013。高梁酒糟以雲芝菌固態發酵提升預料之機能性-以吳郭魚為動物模式。國立臺灣海洋大學食品科學研究所碩士論文。基隆,台灣。
林慧如。2015。高梁酒糟以雲芝菌固態發酵及其產物對白蝦抗熱緊迫之影響。國立臺灣海洋大學食品科學研究所碩士論文。基隆,台灣。
洪唯真。2014。以天然農業作物為發酵原料固態培養靈芝菌絲體及所得靈芝菌絲米基開發富含 γ-胺基丁酸之乳酸菌發酵產品。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
胡維丞。2018。高粱酒糟以雲芝固態發酵之條件及其產物機能性成分之變化。國立宜蘭大學食品科學研究所碩士論文。宜蘭,台灣。
徐錦堂。1996。中國藥用真菌學。北京醫科大學中國協和醫科大學聯合出版社。p. 475-495。
陳怡倩。2001。利用批次液態培養來探討檸檬酸對裂摺菌生長及其多醣體生成影響之研究。國立中央大學化學工程研究所碩士論文。桃園,台灣。
楊慕義。2016。植酸酶活性乳酸菌於固態發酵槽降解豆粕中植酸之最適條件之建立。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
葉峯村。2010。培養基添加枸杞萃取液發酵雲芝胞內多醣肽及胞外多醣肽紅外線光譜及免疫活性分析。大葉大學生物產業科技研究所碩士論文。彰化。台灣。
廖志遠。2010。高粱與高粱酒糟機能性成分之鑑定及其酚酸對吳郭魚抗寒功效之評估。國立臺灣海洋大學食品科學研究所碩士論文。基隆,台灣。

A. O. A. C. (2003). Official methods of analysis. Association of official analytical chemists, 17th, Washington, D. C., USA.
Abram, Q., Dixon, B., & Katzenback, B. (2017). Impacts of low temperature on the teleost immune system. Biology, 6, 39.
Adel, M., Pourgholam, R., Zorriehzahra, J., & Ghiasi, M. (2016). Hemato–Immunological and biochemical parameters, skin antibacterial activity, and survival in rainbow trout (Oncorhynchus mykiss) following the diet supplemented with Mentha piperita against Yersinia ruckeri. Fish & Shellfish Immunology, 55, 267-273.
Adewolu, M.A. 2008. Potentials of sweet potato (Ipomoea batatas) leaf meal as dietary ingredient for Tilapia zilli fingerlings. Pakistan Journal of Nutrition. 7, 444-449.
Aidoo, K. E., Hendry, R., & Wood, B. J. B. (1981). Estimation of fungal growth in a solid-state fermentation system. European Journal of Applied Microbiology and Biotechnology, 12, 6-9.
Ainsworth, G. C., Sparrow, F. K., & Sussman, A. S. (1973). The Fungi. Vol. IVA. A Taxonomic Review with Keys: Ascomycetes and Fungi Imperfecti. Academic Press, New York. pp. 621.
Ajlouni, S. O., Beelman, R. B., Thompson, D. B., & Mau, J. L. (1995). Changes in soluble sugars in various tissues of cultivated mushrooms, Agaricus bisporus, during postharvest storage. Developments in Food Science, 37, 1865-1880.
Alves, M. J., Ferreira, I. C. F. R., Froufe, H. J. C., Abreu, R. M. V., Martins, A., & Pintado, M. (2013). Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology. 115, 346-357.
Anderson, A. D., Alam, M. S., Watanabe, W. O., Carroll, P. M., Wedegaertner, T. C., & Dowd, M. K. (2016). Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata. Aquaculture, 464, 618-628.
Avato, P., Bianchi, G., & Murelli, C. (1990). Aliphatic and cyclic lipid components of sorghum plant organs. Phytochemistry, 29, 1073-1078.
Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199-1221.
Baldisserotto, B. (2009). Fisiologia de Peixes Aplicada à Piscicultura. Santa Maria, UFSM. 
Bari, E., Daryaei, M. G., Karim, M., Bahmani, M., Schmidt, O., Woodward, S., Ghanbary, M & Sistani, A. (2019). Decay of Carpinus betulus wood by Trametes versicolor-An anatomical and chemical study. International Biodeterioration & Biodegradation, 137, 68-77.
Barr, D. P., & Aust, S. D. (1994). Mechanisms white rot fungi use to degrade pollutants. Environmental Science & Technology, 28, 78-87.
Barton, B. A. (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology. 42, 517-525.
Benesch, M. G., & McElhaney, R. N. (2014). A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1838, 1941-1949.
Berardi, L. C., Goldblatt, L. A., & Liener, I. E. (1980). Toxic constituents of plant foodstuffs. Academic Press, New York, pp211-266.
Bezerra, R. S., Lins, E. J., Alencar, R. B., Paiva, P. M., Chaves, M. E., Coelho, L. C., & Carvalho Jr, L. B. (2005). Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry, 40, 1829-1834.
Bian, G., Deng, Z., & Liu, T. (2017). Strategies for terpenoid overproduction and new terpenoid discovery. Current Opinion in Biotechnology, 48, 234-241.
Bombeo-Tuburan, I., Coniza, E. B., Rodriguez, E. M., & Agbayani, R. F. (2001). Culture and economics of wild grouper (Epinephelus coioides) using three feed types in ponds. Aquaculture, 201, 229-240.
Bowden, T. J. (2008). Modulation of the immune system of fish by their environment. Fish & Shellfish Immunology, 25, 373-383.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Burdette, A., Garner, P. L., Mayer, E. P., Hargrove, J. L., Hartle, D. K., & Greenspan, P. (2010). Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. Journal of Medicinal Food, 13, 879-887.

Burgos-Aceves, M. A., Cohen, A., Smith, Y., & Faggio, C. (2018). MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicology and Environmental Safety, 148, 995-1000.
Burrells C., Williams P. D., Southgate P. J. & Wadsworth S. L. (2001). Dietary nucleotides: a novel supplement in fish feeds. 2. Effects on vaccination, salt water transfer, growth rates and physiology of Atlantic salmon (Salmo salar L). Aquaculture.199, 171-184.
Burrells, C., Williams, P. D., Southgate, P. J., & Crampton, V. O. (1999). Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Veterinary Immunology and Immunopathology, 72, 277-288.
Campos, F. A. P., & Richardson, M. (1984). The complete amino acid sequence of the α‐amylase inhibitor I‐2 from seeds of ragi (Indian finger millet, Eleusine coracana Gaertn.). FEBS letters, 167, 221-225.
Castano, G., Menendez, R., Mas, R., Amor, A., Fernandez, J. L., Gonzalez, R. L., ... & Alvarez, E. (2002). Effects of policosanol and lovastatin on lipid profile and lipid peroxidation in patients with dyslipidemia associated with type 2 diabetes mellitus. International Journal of Clinical Pharmacology Research, 22, 89-99.
Chang, Y. H., Lin, Y. H., Hsieh, C. H., & Chen, Y. M. (2019). Aurantiochytrium dietary supplements reduce intra-cohort cannibalism among orange-spotted groupers (Epinephelus coioides) by modulating brain 5-HT and serum cortisol. Aquaculture, 502, 202-211.
Chemler, J. A., Yan, Y., & Koffas, M. A. (2006). Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microbial Cell Factories, 5, 20.
Chen, H. (2014). Chemical composition and structure of natural lignocellulose. In Biotechnology of Lignocellulose. Springer, Dordrecht, pp. 25-71
Chen, W., Ai, Q. H., Mai, K. S., Xu, W., Liufu, Z. G., Zhang, W. B., & Cai, Y. H. (2011). Effects of dietary soybean saponins on feed intake, growth performance, digestibility and intestinal structure in juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture, 318, 95-100.
Chen, X. J., Archelas, A., & Furstoss, R. (1993). Microbiological transformations. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganisms. An unequivocal access to all four bisabolol stereoisomers. Journal of Organic Chemistry, 58, 5528-5532. 
Chen, Y. H., Fang, S. W., & Jeng, S. S. (2013). Zinc transferrin stimulates red blood cell formation in the head kidney of common carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166, 1-7.
Chen, Y., Xie, M. Y., & Gong, X. F. (2007). Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. Journal of Food Engineering, 81, 162-170.
Cheng, A. C., Cheng, S. A., Chen, Y. Y., & Chen, J. C. (2009). Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus. Fish & Shellfish Immunology, 26, 768-772.
Cheng, Z. J., & Hardy, R. W. (2004). Effects of microbial phytase supplementation in corn distiller's dried grain with solubles on nutrient digestibility and growth performance of rainbow trout, Oncorhynchus mykiss. Journal of Applied Aquaculture, 15, 83-100.
Cheng, Z. J. & Hardy, R. W. (2000). Nutritional value of diets containing distillers dried grain with solubles for rainbow trout, Oncorhynchus mykiss. Journal of World Aquaculture Society, 15, 101–113.
Chieng, C. C. Y., Daud, H. M., Yusoff, F. M., & Abdullah, M. (2018). Immunity, feed, and husbandry in fish health management of cultured Epinephelus fuscoguttatus with reference to Epinephelus coioides. Aquaculture and Fisheries, 3, 51-61.
Chiu, S. T., & Pan, B. S. (2002). Digestive protease activities of juvenile and adult eel (Anguilla japonica) fed with floating feed. Aquaculture, 205, 141-156.
Chu, K. K., Ho, S. S., & Chow, A. H. (2002). Coriolus versicolor: a medicinal mushroom with promising immunotherapeutic values. Journal of Clinical Pharmacology, 42, 976-984.
Collins, R. A., & Ng, T. B. (1997). Polysaccharopeptide from Coriolus versicolor has potential for use against human immunodeficiency virus type 1 infection. Life Sciences, 60, PL383-PL387.
Cesquini, M., Torsoni, M. A., Stoppa, G. R., & Ogo, S. H. (2003). t-BOOH-induced oxidative damage in sickle red blood cells and the role of flavonoids. Biomedicine and Pharmacotherapy. 57, 124-129.
Cui, J., & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances, 21, 109-122.

Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44, 236-251.
Dykes, L., Peterson, G. C., Rooney, W. L., & Rooney, L. W. (2011). Flavonoid composition of lemon-yellow sorghum genotypes. Food Chemistry, 128, 173-179.
Englyst, H. N., & Kingman, S. M. (1990). Dietary fiber and resistant starch. In Dietary fiber. Springer, Boston, MA, pp. 49-65.
Evans, C. S. (1985). Properties of the β-D-glucosidase (cellobiase) from the wood-rotting fungus, Coriolus versicolor. Applied Microbiology and Biotechnology, 22, 128-131.
Fazio, F., Piccione, G., Arfuso, F. and Faggio, C. 2015. Peripheral blood and head kidney haematopoietic tissue response to experimental blood loss in mullet (Mugil cephalus). Marine Biology Research. 11, 197-202.
Fuzfai, Z., & Perl, I. M. (2007). Gas chromatographic-mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits. Journal of Chromatography. 1149, 88-101.
FAO. (2019). Fishery and aquaculture statistics. Global aquaculture production 1950-2017 (FishstatJ). In FAO Fisheries and Aquaculture Department. (2019) http://www.fao.org/fishery/statistics/software/fishstatj/en]. Accessed date 2019/7/1.
Gatlin III, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., & Overturf, K. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 38, 551-579.
Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry 59.2: 257-268.
Gouni-Berthold, I., & Berthold, H. K. (2002). Policosanol: clinical pharmacology and therapeutic significance of a new lipid-lowering agent. American Heart Journal, 143, 356-365.
Greiner, R., & Konietzny, U. (2006). Phytase for food application. Food Technology and Biotechnology, 44, 125-140.
Gutarowska, B., Zakowska, Z. Mathematical models of mycelium growth and ergosterol synthesis in stationary mould culture. (2009) Letters in Applied Microbiology. 48, 605-610. 
Hahn, D. H., Faubion, J. M., Rooney, L. W., 1983. Sorghum phenolic acids, their high performance liquid chromatography separation and their relation to fungal resistance. Cereal Chemistry 60, 255–259.
Hammel K. E. (1997). Fungal degradation of lignin. In: Driven by Nature: Plant litter quality and decomposition. Eds. G Cadish and KE Giller, CAB International, Wallingford, UK. pp 33-45.
Hansen, G. H., Lübeck, M., Frisvad, J. C., Lübeck, P. S., & Andersen, B. (2015). Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochemistry, 50, 1327-1341.
Hansen, G. H., Lübeck, M., Frisvad, J. C., Lübeck, P. S., & Andersen, B. (2015). Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochemistry, 50, 1327-1341.
Hardy, R. W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquaculture Research, 41, 770-776.
Hertrampf, J. W., & Piedad-Pascual, F. (2000). Animal fats. In Handbook on Ingredients for Aquaculture Feeds. Springer, Dordrecht, pp. 43-59.
Hor, S. Y., Farsi, E., Yam, M. F., Nuyah, N. M., & Asmawi, M. Z. (2011). Lipid-lowering effects of Coriolus versicolor extract in poloxamer 407-induced hypercholesterolaemic rats and high cholesterol-fed rats. Journal of Medicinal Plants Research, 5, 2261-2266.
Hostettmann, K., & Marston, A. (1995). Saponins. Cambridge University Press. New York. pp. 458.
Hsu, W. K., Hsu, T. H., Lin, F. Y., Cheng, Y. K., & Yang, J. P. W. (2013). Separation, purification, and α-glucosidase inhibition of polysaccharides from Coriolus versicolor LH1 mycelia. Carbohydrate polymers, 92, 297-306.
Hussain, S. M., Afzal, M., Javid, A., Hussain, A. I., Ali, Q., Mustafa, I., Chatha, S. A. S., Shah, S. Z. H., Hussain, M., & Ullah, M. I. (2015). Efficacy of Phytase Supplementation on Growth Performance and Mineral Digestibility of Labeo rohita Fingerlings Fed on Cottonseed Meal Based Diet. Pakistan Journal of Zoology, 47, 699-709.
Hwang, K. T., Cuppett, S. L., Weller, C. L., & Hanna, M. A. (2002). Properties, composition, and analysis of grain sorghum wax. Journal of the American Oil Chemists' Society, 79, 521-527. 
Iqbal, H. M. N., Asgher, M., & Bhatti, H. N. (2011). Optimization of physical and nutritional factors for synthesis of lignin degrading enzymes by a novel strain of Trametes versicolor. BioResources, 6, 1273-1287.
Jin, M., Zhou, W., Jin, C., Jiang, Z., Diao, S., Jin, Z., & Li, G. (2019). Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor. Natural Product Research, 33, 2422-2425.
Kasumyan, A. O., & Døving, K. B. (2003). Taste preferences in fishes. Fish and Fisheries, 4, 289-347.
Kawai, S., Umezawa, T., Shimada, M., & Higuchi, T. (1988). Aromatic ring cleavage of 4, 6-di (tert-butyl) guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. Federation of European Biochemical Societies (FEBS) Letters. 236, 309-311.
Keyser, P., Kirk, T. K., & Zeikus, J. G. (1978). Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology, 135, 790-797.
Kidd, P. M. (2000). The use of mushroom glucans and proteoglycans in cancer treatment. Alternative Medicine Review, 5, 4-27.
Kirk, T. K., & Farrell, R. L. (1987). Enzymatic" combustion": the microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465-501.
Knežević, A., Milovanović, I., Stajić, M., & Vukojević, J. (2013). Potential of Trametes species to degrade lignin. International Biodeterioration & Biodegradation, 85, 52-56.
Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W., & Frokiaer, H. (2008). Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100, 120-129.
Krishna, C. (2005). Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology, 25, 1-30.
Kumar, V., Sinha, A. K., Makkar, H. P. S., De Boeck, G., & Becker, K. (2012). Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 96, 335-364.
Kuzmina, V. V. (1996). Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture, 148, 25-37. 
Kasumyan, A. O., & Sidorov, S. S. (1995). The palatability of free amino acids and classical taste substances in frolich char, Salvelinus alpinus erythrinus (Georgi). Nordic Journal of Freshwater Research (Sweden), 71, 320-323.
Lee, S. M., and Pan, B. S. (2003a). Inhibitory effect of tannin in dietary sorghum distillery residue and preliminary treatment with polyethylene glycol on in vitro digestibility of grey mullet (Mugil cephalus). Journal of Food Biochemistry. 27, 485-500.
Lee, S. M., & Pan, B. S. (2003b). Effect of dietary sorghum distillery residue on hematological characteristics of cultured grey mullet (Mugil cephalus)—an animal model for prescreening antioxidant and blood thinning activities. Journal of Food Biochemistry, 27, 1-18.
Lee, S. M., Cheng, H. L., & Pan, B. S. (2009). LDL oxidation, antioxidant capacity and growth of cultured grey mullet (Mugil cephalus) fed dietary sorghum distillery residue pretreated with polyethylene glycol. Journal of Agricultural and Food chemistry, 57, 7877-7882.
Lee, S. M., Lin, J. J., Liao, C. Y., Cheng, H. L., & Sun Pan, B. (2014). Phenolic acids identified in sorghum distillery residue demonstrated antioxidative and anti-cold-stress properties in cultured tilapia, Oreochromis mossambicus. Journal of Agricultural and Food Chemistry, 62, 4618-4624.
Leenhouwers, J. I., Adjei-Boateng, D., Verreth, J. A. J., & Schrama, J. W. (2006). Digesta viscosity, nutrient digestibility and organ weights in African catfish (Clarias gariepinus) fed diets supplemented with different levels of a soluble non-starch polysaccharide. Aquaculture Nutrition, 12, 111-116.
Li M. H., Robinson E. H., Oberle D. F. & Lucas P. M. (2010). Effects of various corn distillers by-products on growth and feed efficiency of channel catfish, Ictalurus punctatus. Aquaculture Nutrition, 16,188-193.
Li, P., Gatlin, D. M. (2004). Dietary brewers yeast and the prebiotic Grobiotic (TM) AE influence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops × M. saxatilis) to Streptococcus iniae infection. Aquaculture, 231, 445–456.
Liby, K. T., Yore, M. M., & Sporn, M. B. (2007). Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nature Reviews. Cancer. 7, 357.  
Lim, C., J. C. Garcia, M. Yildirim-Aksoy, P. H. Klesius, C. A. Shoemaker, and J. J. Evans. (2007). Growth response and resistance to Streptococcus iniae of Nile tilapia, Oreochromis niloticus, fed diets containing distiller’s dried grains with solubles. Journal of World Aquaculture Society, 38,231–237.
Lim, C., M. Yildirim-Aksoy, and P. H. Klesius. (2009). Growth response and resistance to Edwardsiella ictaluri of channel catfish, Ictalurus punctatus, fed diets containing distiller’s dried grains with soluble. Journal of the World Aquaculture Society, 40, 182–193.
Llorens-Blanch, G., Badia-Fabregat, M., Lucas, D., Rodriguez-Mozaz, S., Barceló, D., Pennanen, T., & Blánquez, P. (2015). Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor. Environmental Science: Processes & Impacts, 17, 429-440.
Lopes, R. D. C. S. O., de Lima, S. L. S., da Silva, B. P., Toledo, R. C. L., de Castro Moreira, M. E., Anunciação, P. C., and Martino, H. S. D. (2018). Evaluation of the health benefits of consumption of extruded tannin sorghum with unfermented probiotic milk in individuals with chronic kidney disease. Food Research International, 107, 629-638.
Lovell, T. (1989). Nutrition and feeding of fish. Van Nostrand Reinhold, New York, pp. 260.
Lovell, T. (1998). Digestion and metabolism In:Nutition and feeding of fish, 2o edition. Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts, pp. 71-89.
Lowe, J. L. (1963). The Polyporaceae of the world. Mycologia, 55, 1-12.
Lu, Z. M., Tao, W. Y., Xu, H. Y., Ao, Z. H., & Xu, Z. H. (2008). Quantitative analysis of triterpenoids from Antrodia camphorata in submerged culture. Chinese Traditional Patent Medicine. 30, 402-405.
Mau, J. L., Lin, H. C., & Chen, C. C. (2001). Non-volatile components of several medicinal mushrooms. Food Research International. 34, 521-526.
McCaskill, D., & Croteau, R. (1997). Prospects for the bioengineering of isoprenoid biosynthesis. In Biotechnology of aroma compounds. Springer, Berlin, Heidelberg, pp. 107-146.
McCue, P. P.; Shetty, K. (2005). Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochemistry, 40, 1791−1797.

McNeil, M., Darvill, A. G., Fry, S. C., & Albersheim, P. (1984). Structure and function of the primary cell walls of plants. Annual Review of Biochemistry. 53, 625-663.
Metts, L.S., Rawles, S. D., Brady, Y. J., Thompson, K. R., Gannam, A. L., Twibell, R. G., Webster, C. D. (2011). Amino acid availability from selected animal- and plant- derived feedstuffs for market-size sunshine bass (Morone chrysops x Morone saxatilis). Aquaculture Nutrition, 17,123-131
Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52, 673-751.
Mininni, A. N., Milan, M., Ferraresso, S., Petochi, T., Di Marco, P., Marino, G., Livi S., Romualdi C., Bargelloni L., Patarnello, T. (2014). Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC genomics, 15, 765.
Mohapatra, D., Patel, A. S., Kar, A., Deshpande, S. S., & Tripathi, M. K. (2019). Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chemistry, 271, 129-135.
Morales, G. A., Moyano, F. J., & Marquez, L. (2011). In vitro assessment of the effects of phytate and phytase on nitrogen and phosphorus bioaccessibility within fish digestive tract. Animal Feed Science and Technology, 170, 209-221.
Moyson, E., & Verachtert, H. (1991). Growth of higher fungi on wheat straw and their impact on the digestibility of the substrate. Applied Microbiology and Biotechnology, 36, 421-424.
Nadarajah, S., & Flaaten, O. (2017). Global aquaculture growth and institutional quality. Marine Policy, 84, 142-151.
Nagy, M., & Grancai, D. (1996). Colorimetric determination of flavanones in propolis. Pharmazie. 51, 100-101.
Nardocci, G., Navarro, C., Cortés, P. P., Imarai, M., Montoya, M., Valenzuela, B & Fernández, R. (2014). Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish & Shellfish Immunology, 40, 531-538.
Nardocci, G., Navarro, C., Cortés, P. P., Imarai, M., Montoya, M., Valenzuela, B., Jara, P., Acuna-Castillo, C. & Fernández, R. (2014) Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish and Shellfish Immunology. 40, 531-538.

Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A. P., Forster I, Gatlin D. M., Goldburg, R. J., Hua, K, & Nichols, P. D. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, 106, 18040 -15110.
Niu, D., Zuo, S., Jiang, D., Tian, P., Zheng, M., & Xu, C. (2018). Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Animal Feed Science and Technology, 237, 46-54.
Noma, Y., & Asakawa, Y. (1995). Aspergillus spp.: biotransformation of terpenoids and related compounds. In Medicinal and Aromatic Plants VIII. Springer, Berlin, Heidelberg, pp. 62-96.
Nurika, I., Eastwood, D. C., & Barker, G. C. (2018). A comparison of ergosterol and PLFA methods for monitoring the growth of ligninolytic fungi during wheat straw solid state cultivation. Journal of Microbiological Methods, 148, 49-54.
Nurika, I., Eastwood, D. C., & Barker, G. C. (2018). A comparison of ergosterol and PLFA methods for monitoring the growth of ligninolytic fungi during wheat straw solid state cultivation. Journal of Microbiological Methods, 148, 49-54.
Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T., & Yoshikawa, M. (2000). Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biological Chemistry, 381, 67-74.
Oliva-Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of Fish Diseases, 35, 83–108.
Pacak, K., & Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocrine Reviews, 22, 502-548.
Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22, 189-259.
Papatryphon, E., Howell, R. A., & Soares, J. H. (1999). Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. Journal of the World Aquaculture Society, 30, 161-173.
Park E. Y., Kim E. H., Kim M. H., Seo Y. W., Lee J. I., Jun H. S. (2012) Polyphenol-rich fraction of brown alga Ecklonia cava collected from Gijang, Korea, reduces obesity and glucose levels in high-fat diet-induced obese mice. Evidence-Based Complementary and Alternative Medicine, 2012, 1-11.

Paterson, E., & Amadò, R. (1997). Simplified method for the simultaneous gas chromatographic determination of fatty acid composition and cholesterol in food. Food Science and Technology. 30, 202-209.
Perez-Velazquez, M., Gatlin III, D. M., González-Félix, M. L., & García-Ortega, A. (2018). Partial replacement of fishmeal and fish oil by algal meals in diets of red drum Sciaenops ocellatus. Aquaculture, 487, 41-50.
Peterson, J., & Dwyer, J. (1998). Flavonoids: dietary occurrence and biochemical activity. Nutrition Research, 18, 1995-2018.
Piazzon, A., Vrhovsek, U., Masuero, D., Mattivi, F., Mandoj, F., & Nardini, M. (2012). Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. Journal of Agricultural and Food Chemistry, 60, 12312 - 12323.
Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science, 311, 808-811.
Qi, Y., Diao, Z., & Liu, T. (2008). The general research situation of medical fungus Coriolus versicolor. Qinghai Pratac, 17, 26-29.
Refstie, S., Svihus, B., Shearer, K. D., & Storebakken, T. (1999). Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Animal Feed Science and Technology, 79, 331-345.
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20, 933-956.
Robinson, E. H. (1991). Improvement of cottonseed meal protein with supplemental lysine in feeds for channel catfish. Journal of Applied Aquaculture, 1, 1-14.
Robinson, E. H., and M. H. Li. (2008). Replacement of soybean meal in channel catfish, Ictalurus punctatus, diets with cottonseed meal and distiller’s dried grains with solubles. Journal of the World Aquaculture Society, 39,521–527.
Robinson, M. L., Gomez-Raya, L., Rauw, W. M., & Peacock, M. M. (2008). Fulton's body condition factor K correlates with survival time in a thermal challenge experiment in juvenile Lahontan cutthroat trout (Oncorhynchus clarki henshawi). Journal of Thermal Biology, 33, 363-368.

Rooney, W. L., Rooney, L. W., Awika, J. A., Dykes, L., (2013). Registration of Tx3362 sorghum germplasm. Journal of Plant Registrations 7, 104–107.
Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185-194.
Sapir-Mir, M., Mett, A., Belausov, E., Tal-Meshulam, S., Frydman, A., Gidoni, D., & Eyal, Y. (2008). Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiology, 148, 1219-1228.
Serna-Saldivar, S. O., & Rooney, W. L. (2014). Production and supply logistics of sweet sorghum as an energy feedstock. Sustainable Bioenergy Production, 193-212.
Shiau, S. Y., Chuang, J. L., & Sun, C. L. (1987). Inclusion of soybean meal in tilapia (Oreochromis niloticus× O. aureus) diets at two protein levels. Aquaculture, 65, 251-261.
Singh, V., Moreau, R. A., & Hicks, K. B. (2003). Yield and phytosterol composition of oil extracted from grain sorghum and its wet‐milled fractions. Cereal Chemistry, 80, 126-129.
Sinha, A. K., Kumar, V., Makkar, H. P. S., De Boeck, G., & Becker, K. (2011). Non-starch polysaccharides and their role in fish nutrition - A review. Food Chemistry, 127, 1409-1426.
Sørensen, C., Bohlin, L. C., Øverli, Ø., & Nilsson, G. E. (2011). Cortisol reduces cell proliferation in the telencephalon of rainbow trout (Oncorhynchus mykiss). Physiology & Behavior, 102, 518-523.
Sørensen, C., Nilsson, G. E., Summers, C. H., & Øverli, Ø. (2012). Social stress reduces forebrain cell proliferation in rainbow trout (Oncorhynchus mykiss). Behavioural Brain Research, 227, 311-318.
Sotak, K. M., Goodband, R. D., Tokach, M. D., DeRouchey, J. M., Nelssen, J. L., & Dritz, S. S. (2010). Nutrient analysis of sorghum dried distillers grains with solubles from ethanol plants located in the Western Plains Region. Kansas Agricultural Experiment Station Research Reports, 265-272.
Speck, M. L. (1984). Compendium of methods for the microbiological examination of foods. American Public Health Association. Washington.

Spedding, G. (2013). The World's most popular assay? a review of the ninhydrin-based free amino nitrogen reaction (FAN assay) emphasizing the development of newer methods and conditions for testing alcoholic beverages. Journal of the American Society of Brewing Chemists, 71, 83-89.
Spiehs, M. J., Whitney, M. H., & Shurson, G. C. (2002). Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. Journal of Animal Science, 80, 2639-2645.
Steenbergen, P. J., Richardson, M. K., & Champagne, D. L. (2011). The use of the zebrafish model in stress research. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 35, 1432-1451.
Tian, X. F., Fang, Z., & Guo, F. (2012). Impact and prospective of fungal pre‐treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 6, 335-350.
Tien, M. (1987). Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Critical Reviews in Microbiology, 15, 141-168.
Tien, M., & Kirk, T. K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221, 661-663.
Tomme, P., Warren, R. A. J., & Gilkes, N. R. (1995). Cellulose hydrolysis by bacteria and fungi. In Advances in Microbial Physiology, 37, 1-81.
Turnbull, A. V., & Rivier, C. L. (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiological Reviews, 79, 1-71.
Urriola, P. E., Shurson, G. C., & Stein, H. H. (2010). Digestibility of dietary fiber in distillers coproducts fed to growing pigs. Journal of Animal Science, 88, 2373-2381.
Valentim-Zabott, M., Vargas, L., Ribeiro, R.P.R., Piau Jr., R., Torres, M.B.A., Rönnau, M. and Souza, J.C. 2008. Effects of a homeopathic complex in Nile tilapia (Oreochromis niloticus L.) on performance, sexual proportion and histology. Homeopathy. 97, 190-195.
van Barneveld, R. J. (1999). Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency. Nutrition Research Reviews, 12, 203-230.
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. 
Vaz, J. A., Almeida, G. M., Ferreira, I. C., Martins, A., & Vasconcelos, M. H. (2012). Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: Identification of phenolic acids with cytotoxic potential. Food Chemistry, 132, 482-486.
Vietor, D. M., Rhodes, G. A., & Rooney, W. L. (2010). Relationship of phenotypic variation in sorghum to nutritive value of crop residues. Field Crops Research, 118, 243-250.
Vil, V. A., Terent’ev, A. O., Savidov, N., Gloriozova, T. A., Poroikov, V. V., Pounina, T. A., & Dembitsky, V. M. (2019). Hydroperoxy steroids and triterpenoids derived from plant and fungi: Origin, structures and biological activities. The Journal of Steroid Biochemistry and Molecular Biology.190, 76-87.
Welker, T.L., Lim, C., Barrows, F.T. and Liu, K. 2014. Use of distiller's dried grains with solubles (DDGS) in rainbow trout feeds. Animal Feed Science and Technology. 195, 47-57.
Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological Reviews, 77, 591-625.
Woodward, J., & Wiseman, A. (1982). Fungal and other β-D-glucosidases - their properties and applications. Enzyme and Microbial Technology. 4, 73-79.
Yadav, M. P., Moreau, R. A., & Hicks, K. B. (2007). Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans. Journal of Agricultural and Food Chemistry, 55, 943-947.
Yamamoto K; Itazawa Y; Kobayashi H (1985). Direct observations of fish spleen by an abdominal window method and its application to exercised and hypoxic yellow tail. Japanese Journal of Ichthyology, 31, 427–433.
Yokota, T. (1997). The structure, biosynthesis and function of brassinosteroids. Trends in Plant Science, 2, 137-143.
Zhang, X. Y., Yu, H. B., & Huang, H. Y. (2007). Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. International Biodeterioration and Biodegradation. 60, 159-164
Zhang, Z., Hu, Z. F., Zhang, L. F., Chen, K., & Singh, P. M. (2018). Effect of temperature and dissolved oxygen on stress corrosion cracking behavior of P92 ferritic-martensitic steel in supercritical water environment. Journal of Nuclear Materials, 498, 89-102.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊