跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李妮欣
研究生(外文):LI, NI-SIN
論文名稱:發酵乳桿菌發酵黑豆萃取水之探討
論文名稱(外文):Fermentation of Black Soybean Water-Extracts by Lactobacillus fermentum
指導教授:張耀南張耀南引用關係
指導教授(外文):CHANG, YAW-NAN
口試委員:劉炳嵐楊繼江
口試委員(外文):LIU, BING-LANYANG, CHI-CHIANG
口試日期:2019-01-11
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:黑豆萃取水發酵乳酸桿菌發酵總生菌數抗氧化活性
外文關鍵詞:Black Soybean Water-Extracts (BSWEs)Lactobacillus fermentumFermentationViable cell countsAntioxidant activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,使用之乳酸菌為本實驗室從黑豆萃取水 (BSWEs) 中篩選分離之菌株,分離後送菌種鑑定,確定此菌株為發酵乳桿菌 (Lactobacillus fermentum)。本研究以不同接菌量 (1%、5%、10% (v/v))起始濃度之發酵乳桿菌菌液發酵,添加不同濃度酵母萃取物 (YE) (0、2.5、5.0 g/L),麥芽萃取物 (ME)(0、2.5、5.0 g/L) 和蔗糖 (0、 2、5、8、10 g/L)之 BSWEs,並探討發酵乳桿菌發酵 BSWEs 之最適條件,研究發酵乳桿菌的 OD600 值和總生菌數(定義為活細胞計數; CFU/mL 的VCCs)。經測試後選擇以 10%(v/v)起始濃度之發酵乳桿菌菌液用於後續研究。對於添加不同比例濃度之 YE 和 ME 之 BSWEs 的生長曲線測試中,在 BSWEs 中添加的 2.5 g/L YE 和 5.0 g/L ME 為所有濃度中,最佳最適合於發酵乳桿菌生長之濃度比例。對於添加不同比例濃度蔗糖之 BSWEs 的生長曲線測試中,發現添加2 g/L蔗糖的發酵乳桿菌的 OD600 值與添加 5、8和10 g/L蔗糖的 OD600 值非常相似。經過測試後選用 BSWEs 中添加 2.5 g/L YE、5 g/L ME 和 2 g/L 蔗糖為發酵發酵乳桿菌生長之最佳濃度,研究發酵時間對發酵乳桿菌 viable cell counts (VCCs) 之影響。發現發酵乳桿菌的 VCCs (第 7 小時約 7×107 CFU/mL),第 6 ~ 9 小時 VCCs 值隨著發酵時間的增加而增加至最高值 (約 5.4 ~ 5.5×108 CFU/mL),在第 9 小時培養後,VCCs 值隨著發酵時間的增加而開始減少。本研究將以 10 % 起始菌液濃度之發酵乳桿菌發酵添加 5.0 ME + 2.5 YE g/L和 2 g/L 蔗糖之 BSWEs,並探討發酵時間對發酵後 BSWEs 上清液的抗氧化活性 (DPPH 清除活性、TPC和RP) 的影響。清除DPPH自由基能力的結果顯示以第12小時的發酵液其 EC50為所有小時數之發酵液中最少的濃度,其濃度為 1.08 mg/mL;BSWEs 發酵後上清液之 Total phenolic contest (TPC) (定義為沒食子酸當量 (gallic acid equivalent;GAE)) 與 Reducing power (RP) (定義為Vitamin C當量(vitamin C equivalent; Vit.C)) 會隨著發酵時間增加而逐漸下降。在 TPC 的部分,結果顯示發酵第 6 小時 ,稀釋濃度 5 mg/mL 時的發酵液,其總多酚含量達到 0.52 mg GAE /mL 為低濃度中最佳之結果;在 RP 結果得知,發酵第 0 小時,稀釋濃度 10 mg/mL 之發酵液其 RP 可達到最高值,其值為 0.23 mg Vit.C/mL,但發酵第 6 小時之發酵液其 RP 可平穩地維持高值。總而發酵乳桿菌在添加 5.0 ME + 2.5 YE g/L和 2 g/L 蔗糖之 BSWEs 中具有良好的生長,並且可以增加 BSWEs 本身具有的營養價值及功能特性。
In this study, the water extract from 1:10 in w/w of black soybean (Glycine max (L) Merr. Tainan No. 5) water was determined to be the culture medium by Lactobacillus fermentum isolated from the black soybean water extracts (BSWEs) in our laboratory. The effects of fermentation time, starter concentration (1%, 5%, 10% (v/v)) and different concentration addition of yeast extract (YE) (0, 2.5, 5.0 g/L ), malt extract (ME) (0, 2.5, 5.0 g/L) and sucrose (0, 2, 5, 8, 10g/L) on the OD600 value and cell viability (defined as viable cell counts; VCCs in CFU/mL) of L. fermentum were investigated. For BSWEs only without any addition, the OD600 of L. fermentum increased with increasing the starter concentration. The 10% (v/v) of the starter was selected for subsequent studies. For the different concentration addition of yeast extract and malt extract, the optimal concentrations of 2.5 g/L YE and the 5 g/L ME added in BSWEs were most suitable for L. fermentum growth. For the different sucrose concentration addition, it was found that the OD600 values for L. fermentum for addition of 2 g/L sucrose were very similar to those for addition of 5, 8, and 10 g/L sucrose. The optimal concentration of 2.5 g/L YE , 5 g/L ME and 2 g/L sucrose added in BSWEs was used to study the effect of fermentation time on VCCs of L. fermentum. The VCCs of L. fermentum (about 7 × 107 CFU/mL at the 0th hr) increased up to the saturation value (about 5.42 ~ 5.49 × 108 CFU/mL) with increasing fermentation time during the first 6th ~ 9th hr. After the 9th hr cultural time, the VCCs of L. fermentum began to decrease with increasing fermentation time. In this study, added 5.0 ME + 2.5 YE g/L and 2 g/L sucrose BSWEs to Lactobacillus fermentum with 10% initial bacterial concentration, and explored the antioxidant activity of fermentation time on BSWEs supernatant after fermentation (DPPH radical scavenging, TPC and RP). The result of scavenging DPPH free radicals showed that the EC50 of the fermentation broth at the 12th hr was the lowest concentration in the fermentation at all hours, the concentration was 1.08 mg/mL; the TPC of the supernatant after BSWEs fermentation (defined as pharose The gallic acid equivalent (GAE) and RP (defined as Vitamin C equivalent; Vit. C) gradually decrease as the fermentation time increases. In the TPC section, the results showed that the fermentation broth at the 6th hr of fermentation and the dilution concentration of 5 mg/mL had a total polyphenol content of 0.52 mg GAE /mL, which was the best result in the low concentration; At the 0th hr, the fermentation broth with a dilution of 10 mg/mL had the highest RP value of 0.23 mg Vit.C/mL, but the RP of the fermentation broth at the 6th hr of fermentation could maintain a high value smoothly.
摘要....................................................................i
Abstract................................................................iii
誌謝....................................................................v
目錄....................................................................vi
表目錄...................................................................xii
圖目錄..................................................................xiii
簡寫說明.................................................................xiv
第一章 緒論..............................................................1
1.1 前言................................................................1
1.2 研究目的.............................................................2
第二章 文獻回顧...........................................................4
2.1 益生菌的介紹..........................................................4
2.1.1 益生菌的定義........................................................4
2.1.2 益生菌功效..........................................................5
2.2乳酸菌介紹.............................................................7
2.2.1 乳酸菌定義..........................................................7
2.2.2 乳酸菌的分類........................................................9
2.2.3 乳酸菌的應用........................................................10
2.3 發酵乳桿菌介紹........................................................13
2.3.1 發酵乳桿菌簡介......................................................13
2.3.2發酵乳桿菌功效.......................................................14
2.3.3 發酵乳桿菌應用......................................................15
2.4黑豆介紹..............................................................16
2.4.1 黑豆簡介...........................................................16
第三章 材料與方法.........................................................20
3.1 實驗材料與設備........................................................20
3.1.1 實驗材料來源........................................................20
3.1.2 實驗儀器............................................................21
3.2實驗條件........................................................22
3.2.1 菌種篩選........................................................22
3.2.2 菌種保存........................................................22
3.2.3 菌種活化........................................................22
3.2.4 培養流程........................................................23
3.3分析方法........................................................25
3.3.1微生物分析 (總生菌數測定)...........................................25
3.3.2發酵過程 pH 值變化.................................................25
3.3.3發酵過程糖度值變化..................................................25
3.4抗氧化的測定........................................................25
3.4.1 黑豆水萃取物的製備.................................................25
3.4.2 清除 DPPH 自由基能力之測定.........................................26
3.4.3 還原力測定........................................................27
3.4.4 總多酚類化合物含量測定..............................................28
3.5 統計分析........................................................28
第四章 結果與討論........................................................29
4.1 L. fermentum發酵黑豆萃取水的生長變化.............................29
4.1.1 10% (v/v)起始菌量L.f發酵添加不同濃度的 YE、ME 和蔗糖之 BSWEs OD600 及 pH的變化影響........................................................29
4.1.2 10% (v/v) 起始菌量 L. fermentum 發酵添加 5.0 g/L ME + 2.5 g/L YE
2 g/L 蔗糖之 BSWEs 之 OD600、總生菌數、pH和糖度的變化..................33
4.2 黑豆萃取水發酵液之抗氧化活性的變化.................................35
4.2.1 DPPH 自由基清除試驗...........................................35
4.2.2 總酚類化合物含量試驗............................................38
4.2.3還原能力試驗......................................................40
4.3抗氧化試驗關係......................................................42
4.3.1 DPPH 清除率與總酚類化合物含量關係..................................42
4.3.2 DPPH 清除率與還原能力關係..........................................42
4.3.3還原能力與總酚類化合物含量關係.......................................42
第五章 結論........................................................46
參考文獻........................................................47
附錄一........................................................54
附錄二........................................................55
附錄三........................................................56
附錄四........................................................57
附錄五........................................................58
Extended Abstract.............................................59


連大進、游添榮、吳昭慧. (1996) 黑豆.少量多樣化雜糧作物栽培手冊. 台灣省政府農林廳.
楊緩絢. (1997) 乳酸菌專輯:原生保健性菌種與益生菌助生質之應用. 財團法人食品工業發展研究所. 新竹.
顏國欽、陳建元、劉展冏、韓建國、劉冠汝、李嘉展、陳建元、虞積凱、孫芳明、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝. (2014) 最新食品化學。華格那企業有限公司.
鄭秀粧. (2004) 乳酸菌於黑豆奶、還原奶中成長情形及貯藏期間變化。中興大學食品科學系碩士論文.
謝明哲.(2012)謝明哲博士的保健食品全事典. 保健食品-乳酸菌,142-154.
Akabanda F., Owusu-Kwarteng J., Tano-Debrah K., Glover R. L., Nielsen D. S., Jespersen L. (2013) Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiol. 34, 277-283.
Anandharaj M., Sivasankari B. (2013) Isolation of potential probiotic Lactobacillus strains from human milk. International Journal of Research and Development in Pharmacy & Life Sciences, 1, 26-29.
Bhathena J., Martoni C., Kulamarva A., Urbanska A. M., Malhotra M., Prakash S. (2009) Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters. Journal of Medicinal Food. 12, 2, 310-319.
Bueno J.M., Saez-Plaza P., Ramos-Escudero F., Jimenez A.M., Fett R., Asuero A.G. (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry. 42, 2.

Cheng L., Cheng X., Deng M., Deng X., Du Q., Ge Y., Guo Q., He J., Jia W., Kang D., Kuang Y., Li C., Li M., Li Y., Li Y., Liu C., Liu X., Lu C., Peng X., Qiu W., Sun Y., Wang H., Wang S. (2015) Atlas of Oral Microbiology, Chapter 3 Supragingival Microbes, 41-65.
Collado M. C., Jalonen L., Meriluoto J., Salminen S. (2006) Protection mechanism of probiotic combination against human pathogens: in vitro adhesion to human intestinal mucus. Asia Pacific Journal of Clinical Nutrition. 15, 4, 570-575.
D’Aimmo M. R., Modesto M., Biavati B. (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. Isolated from dairy and pharmaceutical products. International Journal of Food Microbiology. 115, 1, 35-42.
DiBaise J. K., Zhang H., Crowell M. D., Krajmalnik-Brown R., Decker G. A., Rittmann B. E. (2008) Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings. 83, 4, 460-469.
Digambar K., Sujatha K., Palanisamy B. D., Prathapkumar H. S. (2018) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review. Food Bioscience. 21, 34-44.
Egydio A. P. M., Catarina C. S., Floh E. I. S., Santos D. Y. A. C. D. (2013) Free amino acid composition of Annona (Annonaceae) fruit species of economic interest. Industrial Crops and Products. 45, 373-376.
Einar R., François-Joël G. (1998) Lactic acid bacteria in fish: a review. Aquaculture. 160, 3–4, 177-203.
Fernandes I., Faria A., Calhau C., Freitas V. D., Mateus, N. (2014) Bioavailability of anthocyanins and derivatives. Journal of functional Foods. 7, 54-66.
Fonseca D., Ward W. E. (2004) Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone. 35, 489-497.
Fuller R. (1989) Probiotics in man and animals. Journal of Applied Bacteriology. 66, 5, 365-378.
Gardiner G. E., Bouchier P., O’Sullivan E., Kelly J., Kevin Collins J., Fitzgerald G. (2002) A spray-dried culture for probiotic Cheddar cheese manufacture. International Dairy Journal. 12, 9, 749-756.
Gurr M. I. (1987) Nutritional aspects of fermented milk products. FEMS Microbiology Letters. 46, 3, 337-342.
Guarner F., Schaafsma G. J. (1998) Probiotics. International Journal of Food Microbiology. 39, 3, 237-238.
Hill C., Guarner F., Reid G., Gibson G. R., Merenstein D. J., Pot B., Morelli L., Canani R. B., Flint H. J., Salminen S., Calder P. C., Sanders M. E. (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology. 11, 8, 506-514.
Jayamanne V. S., Adams M. R. (2006) Determination of survival, identity, and stress resistance of probiotic bifidobacteria in bio-yoghurts.Letters in Applied Microbiology. 42 , 3, 189-194.
Jo Y. J., Jeong Y. J., Jang S. Y., Seo J. H. (2010) Physicochemical characteristics of chokong and soaking solution on soaking period. Korean Society of Food Science and Nutrition. 39, 281–286.
Kaur B., Balgir P., Mittu B., Chauhan A., Kumar B. (2013) Purification and physicochemical characterization of anti-gardnerella vaginalis bacteriocin hv6b produced by Lactobacillus fermentum isolate from human vaginal ecosystem. American Journal of Biochemistry and Molecular Biology. 3, 91-100.

Kostinek M., Ban-Koffi L., Ottah-Atikpo M., Teniola D., Schillinger U., Holzapfel W. H., Franz C. M. (2008) Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria. Current Microbiology. 56, 306-314.
Kuda T., Tsunekawa M., Goto H., Araki Y .(2005) Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. Journal of Food Composition and Analysis. 18, 7, 625-633.
Lam H. M., Xu X., Liu X. (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics. 42, 1053–1059.
Lavermicocca P. (2006) Highlights on new food research. Digestive and Liver Disease. 38, 2, 295-299.
Liu H., Zhang J., Zhang S., Yang F., Thacker P. A., Zhang G., Qiao S., Ma X.(2014) Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem. 62, 4, 860-866.
Lourens-Hattingh A., Viljoen B. C. (2001) Yogurt as probiotic carrier food. International Dairy Journal. 11, 1–2, 1-17.
Tao M., Yutaka S., Le L. G. (2018) Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Veterinary Immunology and Immunopathology. 205, 35-48.
Nagpal R., Yadav H., Puniya A.K., Singh K., Jain S., Marotta F. (2007) Potential of probiotic and prebiotics for synbiotic functional dairy foods: an overview. International Journal of Probiotics and Prebiotics. 2, 2-3, 75-84.
Mozz F. (2016) Lactic Acid Bacteria. Reference Module in Food Science. Encyclopedia of Food and Health. 501-508.
Peng H., Li W., Li H., Deng Z., Zhang B. (2017) Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) merr). Journal of Functional Foods. 32, 296-312.
Persichetti E., De Michele A., Codini M., Traina G.(2014) Antioxidative capacity of Lactobacillus fermentum LF31 evaluated in vitro by oxygen radical absorbance capacity assay. Nutrition. 30, 7-8, 936-893.
Piano M. D., Morellic L., Strozzib G. P., Allesina S., Barbab M.(2006) Probiotics: from research to consumer. Digestive and Liver Disease. 38, 2, 248-255.
Rasic J. L. (1983) The role of dairy foods containing bifido and acidophilus bacteria in nutrition and health? North European Dairy Journal. 4, 1-5.
Rasic J. L. (2003) Microflora of the intestine probiotics. Encyclopedia of food sciences and nutrition. Academic Press. 3911-3916.
Raquel F. S., Elizabeth H. N., Alinede O. G., Rosane T. H., MarceloV. G.,Leadir L. M. F., MarinaV. C. (2018) Stability, sensory attributes and acceptance of panettones elaborated with Lactobacillus fermentum IAL 4541 and Wickerhamomyces anomallus IAL 4533. Food Research International.
Ruiz-Moyano S., Martin A., Benito M. J., Hernandez A., Casquete R., Cordoba M. D. G. (2011) Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiol. 28, 839-847.
Sandine W. E. (1979) Role of Lactobacillus in the intestinal tract. Journal of Food Protection. 42, 295.
Sanz Y. (2007) Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: a way of selecting improved probiotic strains. International Dairy Journal. 17, 11, 1284-1289.
Sathe G. B., Mandal S. (2016) Fermented products of India and its implication: A review. Asian Journal of Dairy and Food Research. 35, 1-9.
Sato M., Ramarathnam N., Suzuki Y., Ohkubo T., Takeuchi M., Ochi H. (1996) Varietal Differences in the Phenolic Content and Superoxide Radical Scavenging Potential of Wines from Different Sources. Journal of Agricultural and Food Chemistry. 44, 1, 46.
Saxelin M., Korpela R., Mäyrä-Mäkinen A. (2003) Introduction: classifying functional dairy products. Functional dairy products. CRC Press. Boca Raton. LA. USA. 1-16.
Shieh M. J., Shang H. F., Liao F. H., Zhu J. S., Chien Y. W. (2011) Lactobacillus fermentum improved intestinal bacteria flora by reducing Clostridium perfringens. Eur Journal of Clinical Nutrition and Metabolism. 6, 59-63.
Shida K., Namoto M. (2013) Probiotics as efficient immunopotentiators: translational role in cancer prevention. Indian J Med Res. 138, 808-814.
Song J., Liu C., Li D., Gu Z. (2013) Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Industrial Crops and Products. 50, 743-749.
Steinkraus K. H. (2002) Fermentations in world food processing. Comprehensive Reviews in Food Science and Food Safety. 1, 1, 23-32.
Subramanyam D., Chandrasekhar K., Avilala J., Arthala P. K., BuddollaV. (2017) Surfacing role of probiotics in cancer prophylaxis and therapy: A systematic review. Clinical Nutrition. 36, 6, 1465-1472.
Talwalkar A., Miller C. W., Kailasapathy K., Nguyen M. H. (2004) Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. International Journal of Food Science and Technology. 39, 6, 605-611.
Tikkanen M. J., Adlercreutz H. (2000) Dietary soy-derived isoflavone phytoestrogens: could they have a role in coronary heart disease prevention. Biochemical Pharmacology. 60, 1–5.
Walker D. K., Gilliland S. E. (1933) Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. Journal of Dairy Science. 76, 956-961.
Yen G. C., Chen H.Y. (1995) Antioxidant Activity of Various Tea Extracts in Relation to Their Antimut agenicity. J. Agric. Food Chem. 43, 27-32.
Zhang X., Kong B., Xiong Y. L. (2007) Production of cured meat color in nitrite-free Harbin red sausage by Lactobacillus fermentum fermentation. Meat Science. 77, 4, 593-598.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊