跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/29 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜宜峰
研究生(外文):DU, YI-FENG
論文名稱:PEDOT介孔薄膜及Pt-PEDOT複合材料薄膜之電化學合成與應用
論文名稱(外文):Electrochemical Synthesis and Application of PEDOT Mesoporous Film and Pt-PEDOT Composite film
指導教授:李陸玲
指導教授(外文):LI, LU-LIN
口試委員:李陸玲楊家榮陳建仲陳柏均
口試委員(外文):LI, LU-LINYANG, CHIA-JUNGCHEN, CHIEN-CHONCHEN, PO-CHUN
口試日期:2018-11-02
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:能源工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:導電高分子導電薄膜
外文關鍵詞:PEDOT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
有機高分子聚合物擁有良好的生物相容性,穩定性佳以及製備容易等優點而被廣泛的應用於各個領域。於本論文中,使用3,4-乙烯二氧噻吩(EDOT)單體以電化學循環伏安法的方式將PEDOT沉積於氟摻雜氧化錫(FTO)玻璃上,以此沉積方式製備具多孔結構之PEDOT薄膜,並利用改變溶劑、EDOT單體濃度、沉積電位區間、沉積圈數、掃描速率,此五項沉積條件來控制此介孔薄膜之形貌,發現單體低濃度(10 mM、5 mM)且於掃描速率為0.05V/s時沉積的PEDOT薄膜,其孔洞分佈較為緻密且均一,薄膜聚集情況較少,孔洞形貌為最佳,有利於增加材料的反應總面積使得催化活性得以提升。
本論文中的第二部分為 Pt/PEDOT的複合材料之合成與應用。以PEDOT薄膜作為底材,於其多孔結構中以循環伏安法進行電化學沉積Pt奈米粒子,此複合材料除了使Pt擁有更大的反應面積,並可結合PEDOT本身的催化性能,大幅降低做為催化用途時Pt的使用量。實驗中發現,藉由控制電化學參數與沉積圈數,Pt奈米粒子能均勻地散布於PEDOT表面上,沉積圈數為1時,Pt粒子僅以單層沈積於PEDOT上,量測其對I-/I3-的電催化活性,與傳統白金或純PEDOT相比有明顯的催化電流的上升,而逐漸增加沉積圈數時,催化活性則無明顯提升顯示Pt的沈積量並非決定電催化能力的直接條件,而是催化劑的活性表面積,此結果證實此Pt/PEDOT複合材料可應用於染料敏化太陽能電池的對電極材料。
而另一項應用則反向以Pt作為底材,於其上沉積PEDOT製備的PEDOT/Pt複合材料,PEDOT薄膜作為電容層,增加PEDOT/Pt複合材料本身電荷儲存的能力,使其可以應用在生物感測器等。

Organic polymers have been widely studied and used due to their good biocompatibility, high stability and simple fabrication processes. In this study, 3,4-ethoxylene dioxy thiophene(EDOT) monomer was used to deposite PEDOT polymer film directly on the fluorine doped tin oxide (FTO) glass through an electropolymerization by cyclic voltammetry scan. Changing the deposition condition including solvent, monomer concentration, deposition potential interval, scan cycles and scan rate to control the morphology of PEDOT film. It was found that EDOT concentration and scan rate influence on porous morphology a lot, PEDOT film deposit at low EDOT concentration (10mM, 5mM) with a scan rate 0.05V/s possess uniform distribution, less aggregation and the best porous morphology, which is beneficial to increase the total surface area of the material and improve the catalytic activity.
The second part of this study was characterization and fabrication of Pt/PEDOT nanocompositie materials. Using PEDOT film as the substrate, Pt nanoparticles were deposited on the surface of the porous structure of PEDOT by cyclic voltammetry method. The Pt/PEDOT composites reveal great catalytic activity due to their large active surface area that successfully reduce the usage amount of Pt. In the experiment, it can be found that Pt nanoparticles can be evenly dispersed on the PEDOT substrate. By tuning the electrodeposition parameters and the scanning segments, the deposition amount and morphology of Pt can by finely controlled. A small sized and well-dispersed Pt nanoparticle monolayer was deposited with one scanning cycle, this Pt/PEDOT film possess greater electrocatalytic activity for I3- reduction compare to the conventional Pt and pure PEDOT films. However, as the number of scanning circles increases, the catalytic activity begins to remain but not increase with the increased Pt amount..
Another application is to fabricate PEDOT/Pt composites by using three electrodeposited Pt nanostructural films as a substrates including Pt nanoparticles, nanosheets and nanoflowers. As a capacitor layer, the PEDOT film increases the charge storage capacity of the PEDOT/Pt composite, it can be applied to biosensors and electrode materials etc.

致謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論
1-1 前言
1-2 研究動機
第二章 文獻探討
2-1. 導電聚合物(Conductive polymer)
2-1.1 聚合物
2-1.2導電高分子
2-1.3 導電機制
2-2 導電高分子的摻雜方式
2-2.1.離子佈植摻雜(Ion implantation)
2-2.2.化學摻雜(Chemical doping)
2-2.3.電化學摻雜(Electrochemical doping)
2-3 Poly(3,4-ethylenedioxythiophene)
2-3.1 Poly(3,4-ethylenedioxythiophene)介紹
2-3.2 Poly(3,4-ethylenedioxythiophene)之聚合方式
第三章 實驗方法與步驟
3-1實驗儀器與藥品
3-2 FTO透明導電玻璃之前處理
3-3 電化學沉積導電高分子PEDOT薄膜
3-3.1 溶劑對於PEDOT薄膜之影響
3-3.2 電沉積EDOT濃度控制
3-3.3 電沉積PEDOT電位區間之控制
3-3.4 電沉積PEDOT掃描速率之控制
3-3.5 電沉積PEDOT掃描段數之控制
3-4 沉積Pt奈米粒子於PEDOT薄膜
3-4.1 電沉積PEDOT薄膜底材
3-4.2 電沉積Pt奈米粒子掃描段數之控制
3-5 沉積PEDOT薄膜於Pt底材
3-5.1 不同Pt底材之沉積
3-5.2 PEDOT薄膜於不同Pt底材之沉積
3-6 薄膜檢測方式
3-6.1碘催化活性量測
3-6.2 電容充電-放電(Charge storage capacity, CSC)量測
第四章 實驗結果與討論
4-1 PEDOT薄膜結構
4-1.1 溶劑對於PEDOT之影響
4-1.2 EDOT濃度對於薄膜之影響
4-1.3 電位區間對於薄膜之影響
4-1.4 掃描段數對於PEDOT薄膜之影響
4-1.5 掃描速率對於PEDOT薄膜之影響
4-2 Pt奈米粒子沉積於PEDOT薄膜
4-2.1 掃描圈數對於Pt奈米粒子之影響
4-2.2 PEDOT薄膜對於Pt奈米粒子之影響
4-3 PEDOT/Pt複合材料
4-3.1 不同Pt底材之討論
4-3.2 沉積PEDOT薄膜於Pt底材上
第五章 結論
參考文獻

[1] G. Istamboulie , T. Sikora, E. Jubete, E. Ochoteco Jean-Louis Marty, T. Noguer, Talanta, 2010, 82(3), 957-961
[2] L. Xia, Z. Wei, M. Wan, Journal of Colloid and Interface Science , 2010, 341(1), 1-11.
[3] Q. Qin, J. Tao, Y. Yang, Synthetic Metals, 2010, 160, 1167-1172
[4] J. G. Chena, H. Y. Weib, K.C. Ho, 2007, 91, 1472-1477.
[5] EunJoo Yoo, Tatsuhiro Okata, Tornoki Akita, Masanori Kohyama, Junji Nakamura and Itaru Honma, Nano Lett., 2009, 9(6), 2255-2259.
[6] M. Boudart, A. Aldag, J. E. Benson, N. A. Dougharty, C. Girvin Harkins, Journal of Catalysis., 1996, 6, 92-99.
[7] J. G. Chen, H. Y. Wei, K. C. Ho, Solar Energy Materials and Solar Cells, 2007, 91, 1472-1477.
[8] W. Hong, Y. Xu, G. Lu, Chun Li Gaoquan Shi, Electrochemistry communications, 2008, 10, 1555-1558.
[9] J. Kim, J. You, and E. Kim, Macromolecules, 2010, 43, 2322–2327.
[10] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua, A. G. MacDiarmid, Physical Review Letters., 1977, 39, 1098.
[11] R. B. Seymour. New York: Plenum Press, Conductive Polymers, 95-113.
[12] T. Darmanin, F. Guittard, Progress in Polymer Science, 2014, 39,661
[13] Y. Cao, P. Smith and A. J. Heeger, Synthetic Metals, 1992, 48(1), 91-97.
[14] I.H. Loh, R.W. Oliver and P. Sioshansi, Nuclear Instruments and Methods in Physics Research, 1988, B34, 338.
[15] Y. Cao, P. Smith and A. J. Heeger, Synthetic Metals, 1992, 48(1), 91-97.
[16] J. Roncali, P. Blanchard and P. Frere, J. Mater. Chem., 2005, 15, 1589.
[17] J. Roncali, A. Gorgues and M. Jubault, Chem. Mater., 1993, 5, 1456.
[18] A. Elschner, W. Lövenich, MRS Bulletin, 2011, 36, 797.
[19]Y. H. Kim, C. Sachse, M. L. Machala, C. May, Lars M. M., K. Leo, Advanced Function Materials, 2011, 21, 1076–1081
[20] A. Krosa, Nico A. J. M. Sommerdijk, Roeland J. M. Nolte, Sensors and Actuators B , 2005, 106, 289-294. 
[21] M. Cui, Z. Song, Y. Wu, B. Guo, X. Fan, X. Luo, Biosensors and Bioelectronics, 2016, 79, 736–741.
[22] Y. S. Jeong and K. Akagi, J. Mater. Chem., 2011, 21,10478-10480.
[23] G. F. Wang, X. M. Tao, R.X. Wang, Composites Science and Technology, 2008, 68, 2837-2841.
[24]何國川,奈米級化學修飾電極感測生化物質之研究,國立臺灣大學化學工程學系暨研究所,台北,中華民國, 2007.
[25] S. Patra, K. Barai, N. Munichandraiah, Synthetic Metals, 2008, 158, 430-435.
[26] C. H. Wu, T. M. Don, W. Y. Chiu, Polymer, 2011, 52, 1375-1384.
[27] John P. Lock, Sung Gap Im, and Karen K. Gleason, Macromolecules, 2006, 39 ,5326-5329.
[28] Negi S, Bhandari R, Rieth L, Solzbacher F, Biomedical materials, 2010, 5(1), 5.
[29] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, Journal of Photochemistry and Photobiology A: Chemistry ,2004 ,164, 153–157.
[30] L. L. Li, C. W. Chang, H. H. Wu, J. W. Shiu, P. T. Wu, Eric W. G. Diau, J. Mater. Chem., 2012, 22, 6267-6273.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top