跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉承恩
研究生(外文):YE, CHENG-EN
論文名稱:結合雷射無線電力傳輸及可見光通訊之聚光型太陽能模組之研究
論文名稱(外文):The Investigation of a Concentration Photovoltaic Module Based Laser Wireless Power Transmission and Visible Light Communication System
指導教授:黃裕培
指導教授(外文):HUANG, YU-PEI
口試委員:戴政祺洪集輝黃克穠呂昊穎黃譯興
口試委員(外文):DAI,ZHENG-QIHONG,JI-HUIHUANG,KE-NONGLU,HAO-YINGHUANG,YI-XING
口試日期:2019-05-24
學位類別:碩士
校院名稱:國立金門大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:無線電力傳輸可見光通訊聚光型太陽能最大功率追蹤雷射二極體
外文關鍵詞:wireless power transmissionvisual light communicationLight Fidelityconcentration photovoltaicmaximum power point trackinglaser diode
ORCID或ResearchGate:orcid.org/0000-0001-9864-1540
相關次數:
  • 被引用被引用:4
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為系統整合暨開發之研究,目的為開發結合「雷射無線電力傳輸(wireless power transmission,WPT)」及「可見光通訊(visible light communication,VLC)」之聚光型太陽能(concentration photovoltaic,CPV)模組。Li-Fi (Light Fidelity)為近年來被提出之新VLC技術,該技術以太陽能模組作為光接收器,以同時傳輸電力和數據。本論文研究並建構新式Li-Fi系統,嘗試以雷射光束和CPV模組,分別作為發射器和接收器,以進一步改善Li-Fi技術之電力傳輸功率和訊號頻寬。在訊號傳輸部分,本研究以可程式單晶片(programmable system on chip,PSoC)實現FSK (frequency shift key)調變,並設計傳輸及接收端之驅動、濾波放大、調變和解調變電路;在電力傳輸部分,由於雷射光束在接收端會呈現高斯能量分佈的型態,而造成太陽能接收器產生部分遮蔽(partial shading condition,PSC)的現象。針對此問題,本研究提出硬體和軟體兩種解決方法。軟體部分本研究設計一新改良型螢火蟲演算法(modified circuit recombination,MFA),以輔助太陽能接受器之最大功率追蹤(maximum power point tracking,MPPT),此方法整合了NaFA (firefly algorithm with neighborhood attraction)及SFA (simplified firefly algorithm)兩種演算法,可避免陷入區域解並達成快速收斂。硬體部分,本研究從接收器的電路接線著手,設計一新改良型重組電路(modified circuit reconfiguraiton,MCR),此方法採用全跨接TCT佈局(total-cross-tied topology)方式,並簡化所需開關數量,以針對太陽能接收器不同的雷射光分佈型態,動態調整陣列的串並聯接線。測試結果顯示,本研究提出之新式MFA演算法,可有效改善雷射光電力接收端MPPT追蹤時間、準確度和效率;另一方面MCR硬體接線重組方法,可簡化太陽能接收器的輸出功率-電壓曲線(P-V curve)複雜度,並可有效提升系統總輸出功率。本研究所開發之原型實驗系統,同時具備無線電力傳輸和訊號通訊之功能,且具有高轉換效率和傳輸頻寬之優點,未來並可將此架構擴展至大型雷射光束及CPV陣列接收器上。
The aim of this research is to develop a wireless power transmission (WPT) and visual light communication (VLC) hybrid system based on a laser diodes (LD) array and a concentration photovoltaic (CPV) module. The Light Fidelity (Li-Fi), which is one of the novel VLC technology, could simultaneously transmit power and data by a photovoltaic (PV) module receiver. In this study, we further propose using an LD array and a CPV module as the transmitter and receiver to improve the developed Li-Fi system’s power efficiency and data rate. The hardware circuit and components, such as the LD driver, amplifier, filter, and modulator/demodulator, are specifically designed for the proposed novel Li-Fi system. In addition, the transmitted signals are modulated by frequency shift keying (FSK) and implemented by a programmable system on chip (PSoC). Furthermore, to mitigate the Gaussian laser beam spreading and wandering effect, which might result in partial shading condition (PSC) in the PV module, we developed a novel maximum power point tracking (MPPT) algorithm and a new reconfiguration circuit for the receiver. The proposed MPPT algorithm, namely modified firefly algorithm (MFA), integrates the firefly algorithm with neighborhood attraction (NaFA) and the simplified firefly algorithm (SFA) to avoid trapping at local maximum power points (LMPPs) and improve the convergence speed. In addition, the modified circuit reconfiguration (MCR) method was proposed in this study to dynamically switch the CPV array’s circuit connection according to different laser beam spreading patterns. The total-cross-tied (TCT) topology is adopted in the MCR to simplify its switching control algorithm and reduce the number of switches. Experimental results verify that the proposed MFA offers rapid response with high accuracy and efficiency for the MPPT of the laser receiver. Moreover, after applying the MCR, the P-V curves of the CPV module could be simplified and the system output power could be effectively increased. The main advantage of the experimental prototype system is that it can simultaneously transmit power and data with high conversion efficiency and data rate. In addition, the proposed prototype is capable of being extended to a larger scale laser beam with a larger CPV array receiver.
摘要
Abstract
致謝
表目錄
圖目錄
第一章 前言
1.1研究背景
1.1.1無線電力傳輸
1.1.2可見光通訊
1.2研究動機
1.2.1雷射以及聚光型太陽能模組結合無線電力傳輸以及可見光通訊
1.2.2雷射光束呈高斯分佈造成部分遮蔽效應
1.3文獻回顧
1.3.1軟體最大功率追蹤演算法
1.3.2重組硬體電路策略
1.4本研究簡介
第二章 方法
2.1系統架構圖
2.2傳送端架構
2.2.1雷射驅動及調變電路
2.2.2雷射等效模型
2.3接收端架構
2.3.1CPV模組及PSC效應模型
2.3.2解調變電路
2.3.3電力轉換器
2.4雷射光高斯分佈改善方法
2.4.1 MFA軟體演算法
2.4.2 MCR硬體重組方法
第三章 系統模擬
3.1硬體傳送端
3.2硬體接收端
3.3軟體方法MFA
3.4硬體方法MCR
第四章 驗證系統
4.1 VLC和WPT
4.1.1 VLC驗證
4.1.2 WPT驗證
4.2軟體方法MFA
4.3硬體接線方法MCR
4.3.1雷射光源測試驗證
4.3.2太陽光模擬高強度雷射測試驗證
第五章 討論與結論
5.1無線電力及訊號傳輸規格
5.2雷射光高斯分佈改善效果
5.2.1軟體方法MFA的結果比較與分析
5.2.2硬體方法MCR的結果比較與分析
5.3結論
5.4未來展望
參考文獻


[1] W. Zhou and K. Jin, "Efficiency optimization inject current characteristic of laser diode for wireless power transmission," in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3082-3086.
[2]N. Wang, Y. Zhu, W. Wei, J. Chen, S. Liu, P. Li, et al., "One-to-Multipoint Laser Remote Power Supply System for Wireless Sensor Networks," IEEE Sensors Journal, vol. 12, pp. 389-396, 2012.
[3]W. Zhou and K. Jin, "Optimal Photovoltaic Array Configuration Under Gaussian Laser Beam Condition for Wireless Power Transmission," IEEE Transactions on Power Electronics, vol. 32, pp. 3662-3672, 2017.
[4]G. Zubi, J. L. Bernal-Agustín, and G. V. Fracastoro, "High concentration photovoltaic systems applying III–V cells," Renewable and Sustainable Energy Reviews, vol. 13, pp. 2645-2652, 2009.
[5]N. R. E. Laboratory. (2018). Best Research-Cell Efficiencies. Available: https://www.nrel.gov/
[6]X. Bao, G. Yu, J. Dai, and X. Zhu, "Li-Fi: Light fidelity-a survey," Wireless Networks, vol. 21, pp. 1879-1889, 2015.
[7]L. U. Khan, "Visible light communication: Applications, architecture, standardization and research challenges," Digital Communications and Networks, 2016.
[8]S. Viola, M. S. Islim, S. Watson, S. Videv, H. Haas, and A. E. Kelly, "15 Gb/s OFDM-based VLC using direct modulation of 450 GaN laser diode," in Advanced Free-Space Optical Communication Techniques and Applications III, 2017, p. 104370E.
[9]W. Zixiong, D. Tsonev, S. Videv, and H. Haas, "On the Design of a Solar-Panel Receiver for Optical Wireless Communications With Simultaneous Energy Harvesting," Selected Areas in Communications, IEEE Journal on, vol. 33, pp. 1612-1623, 2015.
[10]E. Bialic, L. Maret, and D. Kténas, "Specific innovative semi-transparent solar cell for indoor and outdoor LiFi applications," Applied Optics, vol. 54, pp. 8062-8069, 2015.
[11]A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, "A review on MPPT techniques of PV system under partial shading condition," Renewable and Sustainable Energy Reviews, vol. 80, pp. 854-867, 2017.
[12]G. Dileep and S. N. Singh, "Application of soft computing techniques for maximum power point tracking of SPV system," Solar Energy, vol. 141, pp. 182-202, 2017.
[13]L. Liu, X. Meng, and C. Liu, "A review of maximum power point tracking methods of PV power system at uniform and partial shading," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1500-1507, 2016.
[14]C. A. Schäfer and D. Gray, "Transmission media appropriate laser-microwave solar power satellite system," Acta Astronautica, vol. 79, pp. 140-156, 2012.
[15]M. A. Eltawil and Z. Zhao, "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, vol. 25, pp. 793-813, 2013.
[16]G. Li, Y. Jin, M. W. Akram, X. Chen, and J. Ji, "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, vol. 81, pp. 840-873, 2018.
[17]J. Prasanth Ram and N. Rajasekar, "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, vol. 118, pp. 512-525, 2017.
[18]H. Braun, S. Buddha, V. Krishnan, C. Tepedelenlioglu, A. Spanias, M. Banavar, et al., "Topology reconfiguration for optimization of photovoltaic array output," Sustainable Energy, Grids and Networks, vol. 6, pp. 58-69, 2016.
[19]D. La Manna, V. Li Vigni, E. Riva Sanseverino, V. Di Dio, and P. Romano, "Reconfigurable electrical interconnection strategies for photovoltaic arrays: A review," Renewable and Sustainable Energy Reviews, vol. 33, pp. 412-426, 2014.
[20]B. Patnaik, J. D. Mohod, and S. P. Duttagupta, "Distributed multi-sensor network for real time monitoring of illumination states for a reconfigurable solar photovoltaic array," in 2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1), 2012, pp. 106-109.
[21]M. Alahmad, M. A. Chaaban, S. kit Lau, J. Shi, and J. Neal, "An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time," Solar Energy, vol. 86, pp. 951-963, 2012.
[22]J. P. Storey, P. R. Wilson, and D. Bagnall, "Improved optimization strategy for irradiance equalization in dynamic photovoltaic arrays," IEEE transactions on power electronics, vol. 28, pp. 2946-2956, 2013.
[23]Y.-P. Huang, C.-E. Ye, and X. Chen, "A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions," Energies, vol. 11, p. 2284, 2018.
[24]Y.-P. Huang and S.-Y. Hsu, "A performance evaluation model of a high concentration photovoltaic module with a fractional open circuit voltage-based maximum power point tracking algorithm," Computers & Electrical Engineering, vol. 51, pp. 331-342, 2016.
[25]E. I. Batzelis, I. A. Routsolias, and S. A. Papathanassiou, "An explicit PV string model based on the lambert W function and simplified MPP expressions for operation under partial shading," IEEE Transactions on Sustainable Energy, vol. 5, pp. 301-312, 2014.
[26]EPARC, 電力電子學綜論(第二版): 全華圖書股份有限公司, 2011.
[27]Y. M. Safarudin, A. Priyadi, M. H. Purnomo, and M. Pujiantara, "Maximum power point tracking algorithm for photovoltaic system under partial shaded condition by means updating β firefly technique," in 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE), 2014, pp. 1-5.
[28]陳祥, 以自然演算法及空間排列策略應用於部分遮蔽之聚光型太陽能最大功率追蹤之研究: 國立金門大學電子工程學系碩士論文, 2018.
[29]J. P. Ram and N. Rajasekar, "A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking," IEEE Transactions on Power Electronics, vol. 32, pp. 8486-8499, 2017.
[30]Y. M. Safarudin, A. Priyadi, M. H. Purnomo, and M. Pujiantara, "Maximum power point tracking algorithm for photovoltaic system under partial shaded condition by means updating beta firefly technique," in 2014 6th International Conference on Information Technology and Electrical Engineering (ICITEE), 2014, pp. 1-5.
[31]H. Wang, W. Wang, X. Zhou, H. Sun, J. Zhao, X. Yu, et al., "Firefly algorithm with neighborhood attraction," Information Sciences, vol. 382-383, pp. 374-387, 2017.
[32]Y. M. Safarudin, A. Priyadi, M. H. Purnomo, and M. Pujiantara, "Combining Simplified Firefly and modified P&O algorithm for Maximum Power Point Tracking of photovoltaic system under Partial Shading Condition," in Intelligent Technology and Its Applications (ISITIA), 2015 International Seminar on, 2015, pp. 181-186.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top